Knurling with Alibre

By R. G. Sparber

Copyleft protects this document. ${ }^{1}$

I read on the Alibre ${ }^{(8)}$ BBS how someone drew the knurling pattern using a helical cut. I wondered if there was another way that would use straight lines. Here is the result.

[^0]

I started by selecting my 2D Sketch tool and the XY plane.

Next, I drew reference lines on the X and Y axis and locked them in place with the lock constraint tool. Lee told me that this is just good practice.

I drew a circle and dimensioned it to 1 ".

I used the extrude boss tool to form my cylinder. The default length is 5 " but I have input 1 ".

When I hit OK, my 1" diameter and 1 " long cylinder appears.
Now I'm ready to define my knurling feature.

I selected my 2D sketch tool and the XY plane. Then I drew this triangle. It will be one end of a cut over the surface of the cylinder.

I used the equal constraint to set all sides of my triangle to be of the same length.

I set one side of the triangle to 0.075 " which forces the other two sides to be this long too. Then I set the bottom of the triangle to be 0.49 " from the center of my cylinder. This means that my knurl has a depth of 0.01 ".

When I exited my 2D sketch, my triangle was defined as Sketch<2>.

In order to draw the other end of the cut on the opposite face, I had to first define a new plane that sits on the other end of the cylinder.

This time I used my 2D sketch tool on my new Plane $<2>$. I drew a reference line from the center to beyond the perimeter of the cylinder face. Then I set the angle to 20°.

Here is my second triangle.

I applied the equal constraint to force all sides to be of the same length.

Then I used my symmetric constraint to force the top of the triangle to be centered on my reference line.

When I dimensioned one side to be 0.075 " long, the other two sides of my triangle changed to be the same length.

And finally, I set the distance from center to the bottom end of my triangle.
When I exited 2D sketch, my triangle was given the tag Sketch $<3>$.

Back on my Plane $<2>$, I drew a triangle similar to Sketch $<3>$ but 20° to the left of the centerline. When I exited, this was tagged Sketch<5>.

So now I have Sketch $<3>$ with my triangle angled 20° to the right of my centerline and Sketch<5> angled to the left of my centerline.

Using my 2D sketch tool with the XY plane, I drew another triangle identical to the one found in Sketch<2>.

So now I have Sketch $<2>$ with a triangle on my vertical line and Sketch $<4>$ which looks the same. Why do this? Because the tool that will cut the groove between sketches must use unique end figures. If I use Sketch $<2>$ and Sketch $<3>$ to define a groove, I cannot use Sketch $<2>$ again with Sketch $<5>$ to define another groove.

I had brought up my Loft cut tool and selected Sketch $<2>$ and Sketch $<3>$ as the cross sections. At first the OK button did not turn black. Then I realized that Sketch $<3>$ was below the line that looks like this: >-------<. I used the tool in the lower right corner of the window with the same shape to enable all hidden features. Then I was able to select both Sketches and get the OK button to turn black.

Here is my first cut.

I repeated the process using Sketch $<4>$ and Sketch $<5>$.

I brought up my Circular feature pattern. Then I selected the two cuts, Loft $<3>$ and Loft $<4>$ to put in my "Features to be patterned" box. I put in 30 for the number of copies. If this doesn't look right, I can change it later. Next I clicked on Center dialog box and clicked my Z axis. This will cause my copied features to be cut around this axis. At this point, my OK button turns black and I click it.

A lot of computation must occur so it takes a while for the new surface to appear.

After waiting 25 seconds, this appears. The general shape is OK but there is too much flat between cuts.

This time I used 85 copies. It looks about right but I decided to go into my shop and measure my knurling tool. I will next modify my drawing to match what it forms.

My knurling tool consists of two wheels. Each one has a series of ridges 35° from their axial centerline.

I went back to Sketch $<3>$ and changed the angle from 20° to 35°. I did the same thing to Sketch $<5>$.

I also measured the diameter of the knurling wheel. It was $0.758^{\prime \prime}$. Circumference equals $\pi \times$ Diameter so my wheel comes out to $3.14159 \times 0.758 "=2.381$ ".

The distance between ridges measured out at $0.0625^{\prime \prime}$. I can figure the angle by realizing that when I go around the entire circumference, it is 360°. So to go the distance between ridges, I go

$$
\begin{aligned}
& \text { angle between ridges }=\frac{0.0625^{\prime \prime}}{2.381^{\prime \prime}} \times 360^{\circ} \\
& \text { angle between ridges }=9.45^{\circ}
\end{aligned}
$$

These ridges are equally space. If I divide 9.45° into 360° I get 38.1 ridges. I can't have a fraction of a ridge so the correct number of ridges must be 38 . My guess of 85 was way off. I was going around the part more than once.

I then measured the depth of the knurl and found it to be around 0.035 ". So I went back to Sketches 2 through 5 and updated the distance from center to bottom of triangle to $0.465^{\prime \prime}$. This caused the top of my triangle to be under the surface of the cylinder in the middle so I then had to change the size of the triangle from 0.075 " on a side to 0.1 ". Since the sizes of the triangle were constrained to be equal, I only had to make this change on the size I dimensioned.

I am focused on drawing the knurl pattern, not on actually knurling. The numbers given here are not exact. If you wish to learn more about knurling, one reference is
http://www.engineersedge.com/manufacturing_spec/knurl_chart.htm

I welcome your comments and questions.
Rick Sparber
Rgsparber@aol.com
Rick.Sparber.org

[^0]: ${ }^{1}$ You are free to copy and distribute this document but not change it.

