
R. G. Sparber March 1, 2021 Page 1 of 21

Debugging Code Running on an
Embedded ATtiny85, version 2.1

By R. G. Sparber with valuable guidance from Dave Kellogg

Protected by Creative Commons.1

Conclusion
When limited memory, processing power, and uncommitted output pins exist,

debugging the code can be difficult. The solution presented here addresses this

problem using a single pin to transmit bytes from the ATtiny85 to a PC. These

bytes are converted back into decimal values using Excel.

Contents

Conclusion ... 1

The Problem ... 3

The First Step ... 4

The Built-In Solution ... 4

My Solution .. 4

User's Guide ... 6

Initial Setup .. 6

Printing Options ... 7

Post Processing with Excel .. 8

Error Codes .. 8

Performance ... 9

Reading the ATtiny85's Internal EEPROM ...10

The Serial Signal ..14

The Header ...14

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

R. G. Sparber March 1, 2021 Page 2 of 21

The Bits ..15

The Byte ...15

Software Architecture ..16

Transmitting Software Architecture ..16

Receive Software Architecture ..17

Adjusting Timing ...18

The Hardware ...19

Acknowledgment ...21

R. G. Sparber March 1, 2021 Page 3 of 21

The Problem
The ATtiny85 is an entire computer system in an 8 pin Dual Inline

Package2. Hidden in there are a powerful computer, persistent memory,

dynamic memory, an Analog to Digital Converter (ADC), and even a

programmable differential amplifier. It is only missing one thing: pins.

Can't have it all! With such a small package,

there are only 5 easily usable Input/Output

(IO) pins. A sixth pin can be configured to

be a "weak" IO pin, but then you give up the

ability to reset the device.

When embedded into a project, few if any pins may be free. Yet, many bugs only

show themselves when the device is actually performing the needed task.

My first project using the ATtiny85 was a perfect fit. I needed two analog inputs (3

and 4) and 3 digital outputs (0, 1, and 2). All went well until it was time to debug

the code. Trying to guess what the program was doing via the single red/green

LED connected to the device was maddening. I'm accustomed to putting

Serial.print() statements in my code to tell me what is going on. Their output goes

through a USB cable and into my PC, where the information is displayed.

It is possible to add code to the ATtiny85

to simulate Serial.print(). I would also

need to free up 2 pins for the USB

connection. At that point, there wouldn't

be much room left for my original

functionality. It would also have a major

impact on real-time performance since I'm

running the clock at only 8 MHz. In the

end, I would be watching my code run in

a totally different environment. That

could hide the bugs I and generate new

ones.

2 It is also available in Surface Mount Technology.

javascript:void(0)
javascript:void(0)
https://www.google.com/imgres?imgurl=https://www.labvolt.com/Medias/images/800x800/6239_50_8990_00_gallery_png.jpg&imgrefurl=https://www.labvolt.com/solutions/1_mechatronics/50-8990-00_personal_computer&docid=Qi9-ZIZy1WJuWM&tbnid=Ykq4p9XsVR5bHM:&vet=10ahUKEwjx6ZjMxo3ZAhVLqlQKHVCmB5IQMwjNAigcMBw..i&w=800&h=712&bih=751&biw=995&q=personal%20computer&ved=0ahUKEwjx6ZjMxo3ZAhVLqlQKHVCmB5IQMwjNAigcMBw&iact=mrc&uact=8

R. G. Sparber March 1, 2021 Page 4 of 21

The First Step
Since Arduino code can run on many devices, I first run my ATtiny85 code on a

Pro Micro that is not embedded. I simulate sending signals to output pins with

Serial.print() statements.

This lets me debug the hardware and real-time independent functionality with full

access to the Serial.print() function. However, there is a point when I must move to

the actual hardware and real-time constraints to continue finding problems.

The Built-In Solution
The ATtiny85's has a host of powerful machine language debugging functions that

drive the single Reset pin. Several people have written code with custom hardware

to access these features3. However, I need to debug Arduino code and not deal with

machine language or learning someone's debugging system.

My Solution

 The embedded ATtiny85 drives one, user-specified, IO pin. This signal feeds into

my Test System. The Test System consists of a Translator and a PC running a

Terminal Emulator.

The Translator consists of an optoisolator and a Pro Micro. The

optoisolator permits me to run the ATtiny85 and my Test

System on different grounds, plus protects the PC from

possible ground fault currents generated by my project4.

3 Search with key words ATTiny85 debugWire. Of particular note is the work by Wayne Holder.
4 In my first application, the ATTiny85's ground is 2 volts below the Pro Micro's ground.

R. G. Sparber March 1, 2021 Page 5 of 21

The Translator accepts a nonstandard signal from the ATtiny85 and converts it to

bytes. These bytes are sent out the USB, where they are displayed on the PC.

The ATtiny85 has 8KB of program memory and 512 bytes of dynamic memory.

My transmitter code occupies 14% of this program memory and 7.4% of dynamic

memory.

The Pro Micro runs at 16 MHz and can handle an average of one byte every 60

milliseconds from the ATtiny85. However, up to 128 bytes can be queued up in the

ATtiny85 before transmission begins.

R. G. Sparber March 1, 2021 Page 6 of 21

User's Guide
Initial Setup
First, build the hardware shown on page 19. Then download this code into the Pro

Micro.

Go to your libraries folder, which is probably in your arduinosketchfolder. Create a

folder called skinnyPrint and fill it with this .h file, .cpp file, and keywords.txt file.

Restart the Arduino IDE before you use this library, so it sees the keywords.txt file.

If necessary, you will have to change your ATtiny85 code to free up an IO pin.

At the top of your program, put

#include <skinnyPrint.h>

To tell skinnyPrint which logical pin to use, put

singlePinPrint name(logical pin number);

after the end of setup() and before loop(). name is what you want to put in front of

each of the commands. I suggest you keep it short. logical pin number is the

logical and not the physical pin number to be used on the ATtiny85.

The physical pin numbers are inside the rectangle. The

logical pin numbers are shown inside blue circles.

For example, I wrote

singlePinPrint sPP(3);

which means I have chosen the name sPP and will output data on logical pin 3

which is physical pin 2.

https://rick.sparber.org/SkinnyReceiver.ino
https://rick.sparber.org/skinnyPrint.h
https://rick.sparber.org/skinnyPrint.cpp
https://rick.sparber.org/keywords.txt

R. G. Sparber March 1, 2021 Page 7 of 21

Printing Options
Three functions are used to take bytes from within the ATtiny85 and have them

display on your monitor.

To print a single byte, use

name.PrintN(data)

 It will print Now, which means your program will stop for about 60 ms

 as the bits go out.

To print a single byte quickly, use

name.PrintF(data)

It will print Fast, which means the byte will be put in a queue. This queue can hold

up to 128 bytes. When there is time, call

name.Printer()

It will send all of the bytes in the queue to the monitor.

Examples:

#include <skinnyPrint.h>

Setup(){

}

singlePinPrint sPP(3);//define the name and the output pin

loop(){

byte testByte = 55;

sPP.PrintN(testByte);//55 will appear on the monitor

for(byte index = 0;index < 67;index++){

sPP.PrintF(index);//the queue is filled with 0 - 66

}

sPP.Printer();//send the queue to the monitor

}

The monitor will show 55 and then 0 through 66, one number on a line.

R. G. Sparber March 1, 2021 Page 8 of 21

Post Processing with Excel
You will likely be evaluating the output of SkinnyPrint more than once.

Converting the single bytes into numbers is both drudgery and error-prone. Excel

does a great job of avoiding both. Copy the data from the monitor and paste it into

this Excel spreadsheet. If you have good security on your PC, this spreadsheet will

be flagged because it does contain custom functions.

To convert from four bytes into a long, use the custom function

makelong(MSB,byte2,byte1,LSB).

To convert from two bytes into an integer, use the custom function

makeinteger(MSB,LSB).

Once these mappings and equations are set up, you only have to copy and paste to

get error-free conversions every time. The spreadsheet has a few examples.

Error Codes

You may randomly see the letter "E" on your screen. It means the Test System had

a problem finding the start of a transmission. This often occurs right at power-up

of the ATtiny85, but if you see it later, something is wrong either with the

hardware or with the timing. As long as you run the ATtiny85 at 8 MHz and use

the Pro Micro, which runs at 16 MHz, I don't expect you will have timing

problems. However, there are two constants you can adjust if necessary. See page

18 for details.

If more than 128 bytes are put into the printer queue, the ATtiny85 will send

250 followed by 251 to signal this overflow condition. It will then flush the

queue.

https://rick.sparber.org/excelToolForSkinnyprint.xlsm

R. G. Sparber March 1, 2021 Page 9 of 21

Performance
It will take a total of 60 milliseconds for your ATtiny85 to send one byte. This very

slow speed is due to the optoisolators. I empirically found this to be a reliable, if

not painfully slow, data rate5.

If you have 10 bytes in the queue, Printer()needs

10 × 60 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 600 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠

to get them all out. If the queue is full, it will take almost 8 seconds to empty.

5 I am driving the optoisolator’s input at its maximum current of 10 mA. Charge quickly built up in the

phototransistor inside the optoisolators and the output goes low. This phototransistor has a very large base-emitter

junction so it can collect as many photons as possible from the LED. This gives the optoisolatior decent transfer

gain. This also means that a lot of charge is stored in this junction. Most of the turn off delay comes from getting rid

of this charge. The ATtiny85 outputs close to zero volts. This discharges the small charge within the LED inside the

optoisolators with around
1.4𝑉

330 𝑜ℎ𝑚𝑠
= 4.2 𝑚𝐴. However, none of the charge within the phototransistor is removed by

this current. We must wait for its charge to dissipate without the help of an externally applied current.

R. G. Sparber March 1, 2021 Page 10 of 21

Reading the ATtiny85's Internal EEPROM
 One use for skinnyPrint is to be able to read the ATtiny85's EEPROM. The key to

this puzzle can be found by searching the web using "Spence Konde ATtinyCore."

You will find a superb collection of documentation and software tools that can be

installed on the Arduino IDE.

The needed configuration is shown here.

The Programmer should be set to

USBtinyISP (slow).

Notice that it has the option

Save EEPROM: "EEPROM retained"

This enables me to change the software on

the ATtiny85 without disturbing the

EEPROM. As explained in his

documentation, you must run "Burn

Bootloader" once per device for this to

work. This will corrupt the EEPROM, so be sure to do it before any useful data is

stored there.

I have the SkinnyPrint code installed in my program under test, but it is only

visible to the compiler by uncommenting #define skinnyPrint. If I need to

read the EEPROM or get any other information from the ATtiny85, I enable this

code. All related code is also wrapped in #ifdef skinnyPrint, so they only

take up memory and real-time when needed.

R. G. Sparber March 1, 2021 Page 11 of 21

I added a circuit board on top of my SkinnyPrint

hardware. It holds a

Zero Insertion Force (ZIF) socket, which makes

connecting to an ATtiny85 quick and easy. I drop

in the device and pull the lever down. There is no

chance of bent pins.

The red and black wires attached

to the right connector carry power

to the device. The black wire

connects to pin 4 of the ZIF, while

the red wire connects to pin 8. A

0.1 uf capacitor also connects to pins 4 and 8. It

provides instantaneous power to the ATtiny85.

The connector on the left has a black and yellow wire. These are the SkinnyPrint

input conductors. The black wire connects to pin 4, and the yellow wire connects

to pin 2. This means I must specify logical pin 3 as my output pin.

To use skinnyPrint without this new hardware, I unplug the black/yellow wire

connector and run the wires to the device under test.

That square on the upper left side with the black circle in it is the Reset button. It

connects pin 1 to pin 4 while it is being pressed, and that causes the device to reset.

On the upper right side are 3 test pins arranged vertically. The top pin collects to

pin 7, the middle pin goes to pin 6, and the bottom pin goes to physical pin 5.

On the upper left side are 3 test pins arranged horizontally — the pin on the left

ties to pin 4, which is ground. The middle pin connects to pin 3, and the right pin

goes to pin 2, which is also the output of the skinnyPrint signal.

These test pins let me connect instruments to the ATtiny85's signal pins without

interfering with the ZIF.

R. G. Sparber March 1, 2021 Page 12 of 21

When I want to dump a block of EEPROM, I find it useful to print the address

followed by the data. The incrementing address is easy to identify, so there is no

risk of confusing the address and the data.

For example, I wanted to dump addresses 0 through 11. The highlighting

lets me see each group of addresses. Bytes 0-3 and 4-7 are longs. Bytes 10

and 11 form an integer.

I write to the EEPROM in a rather clunky but straightforward way. A

second utility program called writeEEPROM.ino contains all of my

writes. I then set up the Arduino IDE with this program in one window, and

the program under test is in another window. It is easy to switch between

windows and load into the ATtiny85 either program. I also wrote a simple

program called readEEPROM.ino that is in a third window.

Say I want to verify that my program responds correctly to EEPROM

address 8. As shown here, it is set to 123. I use writeEEPROM.ino to write

this address to 122. Then I load this program via my USBtinyISP.

Next, I load the program under test. If needed, I would move the updated

ATtiny85 from this Programmer to my project and let the software run. If it

doesn't need the rest of the hardware, I can let it run in the Programmer.

To read the EEPROM and see it on the screen I use readEEPROM and skinnyPrint.

A more elegant way to read and write the EEPROM would be to run I2C between

the ATtiny85 and the Pro Micro. This would only work if there were no

optoisolators between them. The ATtiny85 would unplug from its hardware and

plug into the socket on top of the SkinnyPrint box. This socket would get power

from the Pro Micro and have I2C with pull-ups connected to dedicated pins on the

ATtiny85. The Pro Micro would be the master, and the ATtiny85 would be the

slave. The ATtiny85 would have to run SoftWire because it does not have I2C

hardware.

The user would load a program into the ATtiny85 using the Programmer and then

move the device to the SkinnyPrint's socket. Then the user would be able to send

commands to the Pro Micro and receive back data. It would be possible for the

user to ask for any EEPROM address to be dumped or written.

0

143

1

215

2

6

3

0

4

146

5

215

6

6

7

0

8

123

9

0

10

170

11

3

https://rick.sparber.org/writeEEPROM.ino
https://rick.sparber.org/readEEPROM.ino

R. G. Sparber March 1, 2021 Page 13 of 21

This is a fair amount of software development, and the benefits are small. With the

clunky approach, I have to load one or two programs into the ATtiny85 and then

move it to the SkinnyPrint socket or connect the SkinnyPrint cable to the device

plugged into its hardware. The elegant approach requires me to load one program

into the ATtiny85, move it to the SkinnyPrint socket, and have full access to the

EEPROM. If I need to read data from the ATtiny85 while it is plugged into its

hardware, I can't use this approach.

R. G. Sparber March 1, 2021 Page 14 of 21

The Serial Signal
Of top priority was to use as few IO pins on the ATtiny85 as possible6. I could

spare one pin but certainly not more. The strategy I developed with help from Dave

Kellogg consists of three elements:

1. A header
2. A logic 0
3. A logic 1

All of these elements are based on a time duration I call a TimeUnit. Information is

represented by the ratio of time relative to the TimeUnit. This technique qualifies

the signal as "self clocking.7"

The Header

When idle, the receiving logic is constantly looking for the Header. It signals the

start of a byte and provides the TimeUnit.

Each rising edge is potentially the start of the Header. A timer is started on each

rising edge and stopped at the subsequent falling edge. This interval becomes our

candidate TimeUnit. On the next rising edge, we again start a timer. It is stopped at

the subsequent falling edge. If this interval equals about three times the TimeUnit,

we know we have just read the header.

If the ratio is not around 3:1, we take this new time interval and make it our new

candidate TimeUnit. Then the code repeats. Eventually, it will detect the header

plus have a value for our TimeUnit. This technique qualifies the signal as "self-

synchronizing8".

Although not used in timing, all instances that the signal is low are also one

TimeUnit long. This means the Header takes six TimeUnits.

6 I did consider the possibility of having software modulate the devices current drain. If it could shift this current

level between two values, I would be able to design a circuit that would extract the data. Then my scheme would use

no IO pins which would be very cool.
7 See https://en.wikipedia.org/wiki/Self-clocking_signal.
8 See https://en.wikipedia.org/wiki/Self-synchronizing_code

R. G. Sparber March 1, 2021 Page 15 of 21

The Bits

Both a logic 0 and logic 1 begin with a rising

edge.

After one TimeUnit, the logic 0 has a falling

edge and stays low for two TimeUnits.

The logic 1 stays high for two TimeUnits and

then has a falling edge. It stays low for a

TimeUnit.

Since neither of these symbols are high for three TimeUnits, no combination of 0s

and 1s can be mistaken for the header.

 Right after the receiving logic determines the

TimeUnit, it multiplies by 1.5 and calls it the

ReadDelay.

When a rising edge is detected, it delays by

the ReadDelay and then reads the value. If

low, it is a logic 0. If high, it is a logic 1.

Making this simple helps to keep the code

simple and therefore fast.

Each bit takes 3 TimeUnits and 8 bits are passed so sending one byte takes 24

TimeUnits.

The Byte

To keep the code simple (and fast), I only pass single bytes. After the Header has

been detected, the code collects 8 bits and then returns to looking for a Header.

It will take time for the receiving code to pass the byte to the PC. To avoid missing

the next Header, the transmitter will wait an "Inter-Byte" time.

R. G. Sparber March 1, 2021 Page 16 of 21

Software Architecture
The transmitting and receiving code were developed under different constraints, so

they have different architectures.

Transmitting Software Architecture
I have assumed that there will be a burst of data that is real-time critical followed

by rest.

During the frantic moments, I have SkinnyPrintByte(<1 byte>), which places its

byte into a stack and returns. This must run as fast as possible. The present design

allows a burst of ten SkinnyPrintByte () calls. If more are needed, the size of the

stack must be increased. The penalty is small - one byte of dynamic memory is

needed for each additional SkinnyPrintByte().

When there is rest, I process the stack using SkinnyPrinter(). This subroutine

contains three functions:

MonitorStack();

SendFromStack();

SendStream();

MonitorStack() watches for overflow. If none, it returns. If there is overflow, it

prepares to send 0xFF twice to the PC and flushes the rest of the waiting bytes.

The user must know enough about the receiving data to determine if "FF, FF" is

valid data or trouble.

SendFromStack () waits until the last transmission is done and then takes a byte

from the stack and sets it as the next byte to go out.

SendStream () pumps out the waveform. When it gets control during a TimeUnit,

it just returns. If a TimeUnit has just passed, it put out the next high or low.

Most of the time, these subroutines do little and then return to the loop().

R. G. Sparber March 1, 2021 Page 17 of 21

Receive Software Architecture
Here, I don't have to share resources with other programs but do have to be as fast

as possible. We constantly loop through

DetectHeader();

ReceiveByte();

OutputByte();

The first two subroutines are Finite State Machines9. They look for a transition, do

something, look for the next transition, and do something else.

OutputByte() takes the assembled byte and ships it out to the PC with a

Serial.print() command.

The Pro Micro's code can be found here.

9 See https://en.wikipedia.org/wiki/Finite-state_machine.

https://rick.sparber.org/SkinnyReceiver.ino

R. G. Sparber March 1, 2021 Page 18 of 21

Adjusting Timing
There are two timing constants that set how fast data is transmitted to the Test

System by the ATtiny85 code.

The first is InterByteTimeMicroS. It is the

number of microseconds of delay between the

end of one byte and the start of the next header.

This is processing time for the receiver. If you

see random E's being displayed on the PC, raise

this number and see if it solves the problem. See

page 15 for more detail.

The second timing constant is TimeUnitMicroS. It is approximately the width

of a TimeUnit, although another 200 microseconds are added to it as the code

executes. If the bytes you are sending from the ATtiny85 are being corrupted, try

increasing this time. Just remember, there are 6 TimeUnits in the Header plus 24

TimeUnits in the byte, so increasing this constant by 100 microseconds means it

will take 3000 microseconds more to transmit it. See page 14 for more detail.

R. G. Sparber March 1, 2021 Page 19 of 21

The Hardware

This little circuit could prevent you from having a very bad day. Ground from your

laptop or PC connects on the right. Ground on the ATtiny85 connects on the left.

If, for some reason, these two grounds are not at the same voltage, an unknown and

potentially destructive current can flow.

Layout is not critical. Here you see

the input connector,

diode,

the optoisolator, and the

input resistor, R1. Not shown is pull up resistor R2.

All parts mount on a board with 0.1 inch spaced holes.

The most expensive part of this circuit will be shipping and handling. The PC817

opto costs under $0.50, although just about any opto isolator will do here. The

diode can be any general-purpose variety. Both resistors are 0.1watts.

When the ATtiny85 output pin is high relative to its own ground, current will flow

through R1 and into the opto's pin 1. This current will come out of pin 2 and return

to the ATtiny85's ground.

This will cause the opto's pin 4 to pull down to near the Pro Micro's ground. When

the ATtiny85 puts out a low, no current flows, and pin 4 rises to near 5 volts.

If you happen to connect the ATtiny85 leads backward, the diode protects the opto.

If an excessive voltage is connected, R1 will blow, but all other electronics are

protected.

R. G. Sparber March 1, 2021 Page 20 of 21

The USB connector on the Pro Micro is

delicate. If you have a spare cable, plug it

in permanent.

If you choose to not include this circuit, the signal into the Pro Micro will have to

be inverted in the code. For example, when the Pro Micro's code reads a HIGH on

logical pin 9, it should interpret this as a LOW.

R. G. Sparber March 1, 2021 Page 21 of 21

Acknowledgment
Dave Kellogg had the perfect background and willingness to help me get this

system to work. He popped up on the homemadetools.net BBS when I posted a

second rate way to debug code. I learned a first-rate way to do that task, plus

gained subsequent knowledge about tiny pieces of code that move bytes around.

He had done a similar job decades ago and only used 188 bytes. It also used only

2% of the real-time. I was happy getting mine down to 1190 bytes but have hope

that others can see ways to shrink it further. When I start to use my system, real-

time usage numbers will be collected.

Thanks to Spence Konde for his excellent documentation and code.

I welcome your comments and questions.

If you wish to be contacted each time I publish an article, email me with just

"Article Alias" in the subject line. In order to minimize the number of unwanted

articles I send, please tell me which of these subjects interest you:

1. Metalwork

2. Electronics and software

3. Kayaking

4. Electric bikes

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

mailto:Rgsparber.ha@gmail.com

