
R. G. Sparber October 14, 2019 Page 1 of 4

A Debugging Tool for Arduino Code,
version 3.0

By R. G. Sparber

Protected by Creative Commons.1

Publishing an idea for others to see can have extremely positive results. I wrote

version 1.0 of this article about a new way for me to debug Arduino code. To my

delight, one of the readers, Dave Kellogg, pointed out a far better method. It has

since evolved to the following.

During compilation, the string

__LINE__

is converted to a number that equals the line number in the uncompiled code. By

entering

Serial.println(__LINE__);

at every place of interest, I can see if it got there. Since all line numbers are unique

within a file, there is no ambiguity in finding the correct location.

Although the line number is unique, I have found that knowing the subroutine

containing the code speeds up debugging.

__FUNCTION__

is converted by the compiler to the current subroutine’s name.

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

R. G. Sparber October 14, 2019 Page 2 of 4

Especially when debugging code that is running on separate Arduinos in parallel, it

is essential to know the relative time of events. It is easy to hold down the reset

line on both processors and let go at the same time. As part of setup(), I initialize

the variable StartForTimeStampULong to 0 on each device. This lets me time

stamp each diagnostic print. And finally, I use #define, #ifdef, and #endif to turn a

group of prints on and off. When not used, the code is not compiled. This

minimizes memory usage and the impact on real-time.

At the top of the file are a series of #defines that I can comment out as needed. For

example:

//#define DiagPrint1 1

//#define DiagPrint2 1

//#define DiagPrint3 1

//#define DiagPrint4 1

//#define DiagPrint5 1

//#define DiagPrint6 1

//#define DiagPrint7 1

//#define DiagPrint8 1

//#define DiagPrint9 1

//#define DiagPrint12 1

Each line controls a family of diagnostic print statements.

Then, sprinkled around the code is one of two blocks of code that I keep in macros.

It just takes a few keystrokes to insert one of them.

R. G. Sparber October 14, 2019 Page 3 of 4

When I just want to know I’ve been at a place in the code, I use:

#ifdef DiagPrint1

Serial.print(__FUNCTION__);

Serial.print(F(“(): “));

Serial.print(__LINE__);

Serial.print(F(“. TS: “));

Serial.println(millis() – StartForTimeStampULong);

#endif

where DiagPrint1 is replaced by the print family’s name.

It generates something like:

Foobar(): 123. TS:456

which tells me I am in the Foobar subroutine, line 123 with a time stamp of 456

milliseconds since the processor started up.

If I want to see one or more variables, I use:

#ifdef DiagPrint1

Serial.print(__FUNCTION__);

Serial.print(F(“(): “));

Serial.print(__LINE__);

Serial.print(F(“. TS: “));

Serial.println(millis() – StartForTimeStampULong);

Serial.print(F(“ tag “));

Serial.println(data);

#endif

“tag” and “data” are replaced with the variable’s name. I replicate these two lines

as needed in the block of code.

A sample output with tag replaced with “qaz = ” and data replaced with the

variable name “qaz”:

Foobar(): 123. TS:456

qaz = 789

R. G. Sparber October 14, 2019 Page 4 of 4

I welcome your comments and questions.

If you wish to be contacted each time I publish an article, email me with just

"Subscribe" in the subject line. If you are on this list and have had enough, email

me "Unsubscribe" in the subject line.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

mailto:Rgsparber.ha@gmail.com

