
R. G. Sparber January 28, 2017 Page 1 of 150

A Sample Application of an Arduino

Controlling Hardware, version 1.0

By R. G. Sparber

Protected by Creative Commons.
1

I found it helpful to see an actually application that used an Arduino before trying

it myself. This article presents a system that talks with a modified Harbor Freight

digital caliper connected to an Arduino. The Arduino drives a display.

For starters, see http://rick.sparber.org/CBOO.pdf for an overview of the system.

Pay more attention to the headings of this article than the details. There is a layered

approach being used here that starts with the general and becomes more specific.

What follows is the actual Arduino code. I have placed a few major milestones in

square brackets enclosing all caps in red. In-line comments are mostly in lower

case and follow "//". Again, I encourage you to look more at headings than detail.

Is this an example of functioning code? Yes. Is it an example of elegant code? I

doubt it. But I did write it so years later I could read my comments and they made

sense.

You will also see a few places where I changed the structure of the code yet left in

some original code. This helped me transition from the old structure to the new.

A word of advice: do not print out this entire document. It is 150 pages long. If

you do want to print some of it, I recommend you only do the first 17 pages.

1
 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

R. G. Sparber January 28, 2017 Page 2 of 150

A folder must be created that contains two files. The first, called "loop.ino" and the

second is the program. In my case, this is called "SCC_1_5.ino"

Most of the operational code is within the function "loop". By placing "void" in

front of "loop()" I am telling the compiler that I am defining this function and not

to expect any value returned when it is called. However, I do sent it parameters.

void loop()//measure OD and/or ID as determined by the odID flag

{

Top:

initLoop();//initialize loop on each cycle including setting the flag restart to false

 if(odID == onlyOD || odID == ODandID){//measure an OD

 restart = measureAnOD();//along with measuring an OD, it will return the

flag restart

 }

 if((odID == onlyID || odID == ODandID)&& !restart){//measure an ID unless

restart flag set to true

 measureAnID();

 }

}

My second file, SCC_1_5.ino , contains the following large amount of code. You

will see that I did not code everything I wanted to do. This was because I ran out of

program memory for this particular Arduino compatible processor.

R. G. Sparber January 28, 2017 Page 3 of 150

/* Caliper Boost sketch [TITLE]

 Wednesday, November 06, 2013 [DATE TO IDENTIFIED NEWEST

VERSION]

 The caliper scanning code came from

https://sites.google.com/site/marthalprojects/home/arduino/arduino-

reads-digital-caliper [REFERENCE TO SOURCE OF HARDWARE DRIVER]

 High Level Function List [THINK OF THESE AS CUSTOM SOFTWARE

COMMANDS]

 * fetchReading () //function does a single read of the caliper and puts

the result in newResult

 * localMinRead() //scans caliper output looking for local minimum;

output is oldResult

 * localMaxRead() //scans caliper output looking for local maximum;

output is oldResult

 * interpolate() //accepts rawResult in thou and outputs bestResult

which is based on interpolating gage blocks measured

 * displayAnswer() //format measured value and display on LCD in

mm or inches

 * calibrationMode() //collects gage block readings and builds a pair of

tables used to improve caliper accuracy

 * interpolation() //uses the gage block calibration tables to correct

for caliper errors

R. G. Sparber January 28, 2017 Page 4 of 150

 Low Level Function List [THINK OF THESE AS CUSTOM SOFTWARE

TOOLS]

 * setMicro_t0() //define t=0 that will not wrap around; returns

microStartTime that won't have wrap problem

 * setMilli_t0() //returns milliStartTime that won't have wrap

problem

 * microNow() //gives delta time in microseconds and takes care of

any timer wrap. Result is in microDelta.

 * milliNow() //gives delta time in milliseconds and takes care of

any timer wrap. Result is in milliDelta.

 * decode() //function reads the data burst after the first rising

clock transition has occurred and stores it in newResult

 *startIDmeasPrompt() //prompts

 *startODmeasPrompt() //prompts

 *displayRadiusAndWait() //display radius and then holds last reading

until jaws have opened more than Limit distance

 *roundToHalfThou() //input and output is passed as variable

"roundToHalf"

 * jitterAndPortalCheck() //while user is looking at hold message,

this function waits until caliper moved more than jitterLimit plus also

runs

 * commandPortal() looking for user request for a command

R. G. Sparber January 28, 2017 Page 5 of 150

 * limitAndPortalCheck() //wait until jaws move more than Limit while

checking for command request

 *odID() //lets user customize the measurement system to measure just

OD, just ID, or both

 * fractions() //displays the measured value as decimal and various

fractions at the same time

 Feature List [WHAT WAS DONE AND WHAT IS LEFT TO DO]

 # means feature done

 # accept data from caliper

 + in thou

 + in mm

 # be able to look at a stream of data and retain the smallest value

 # display the peak reading and half of the peak reading at the same time

 # when readings increase by more than 0.1" different, take that as the

start of a new sequence

 # when user opens jaws to more than 6", zeros, and then closes jaws

shut and zeros, take that as the start of the calibration mode if in

measurement phase or as the end of the the calibration mode if in

calibration

R. G. Sparber January 28, 2017 Page 6 of 150

 # when in calibration and the caliper is set to inches,

 +the user places a gage block in the jaws with a value equal to x.xx0"

 +after the minimum reading has been found, the display shows the

assumed gage block value and says Next Reference

 +the reference and measured values are stored in the thou table

 +cycle repeats until end of calibration mode behavior seen

 * when in calibration and the caliper is set to mm,

 +the user places a gage block in the jaws with a value equal to x.x0 mm

 +after the minimum reading has been found, the display shows the

assumed gage block value and says Next Reference

 +the reference and measured values are stored in the mm table

 +cycle repeats until end of calibration mode behavior seen

 # upon exiting the calibration mode, the new data is combined with

existing table data, if any, such that it is in ascending order.

 Where new reference values equal existing reference values,replace the

old with the new

 # when a minimum reading is detected, the corresponding table is used

to estimate a more accurate answer by using interpolation

 This sketch interfaces with a Harbor Freight digital caliper in order to

improve its usability and accuracy

R. G. Sparber January 28, 2017 Page 7 of 150

 * A pushbutton will cause power to be applied to the Arduino and

display

 * If no change in caliper data seen within 5 minutes,

 +reduce power to a minimum to the Arduino and display

 +scan for new data every 2 seconds and if new data detected, return to

full power

 * If no change in caliper data seen within 10 minutes, turn power to

Arduino and display off

 # the interface with the caliper is tri-stated when not needed to save the

battery on the caliper

 * monitor battery voltage and give warning when getting low (maybe by

flashing backlight and having a text message)

 * go/no-go

 * averaging of up to 10 readings; if fewer than 5 readings, just take

average. At least 5 readings, throw out max and min and average rest

 * fractional display: show decimal inches, 16ths, 32nds, and 64ths in the

corners of display. If any of the numbers can be reduced, do so (so 4/8"

would be 1/2" and 16ths would be blank)

R. G. Sparber January 28, 2017 Page 8 of 150

[HIGH LEVEL DESCRIPTION OF THE ANALOG HARDWARE]

 The caliper interface circuit takes totem pole signals (0 and +1.5V) from

the caliper and outputs inverted signals (0.1 and +5V) to the Arduino.

 The caliper's signals are always active so the Arduino will tristate the

interface when it is off in order to prevent caliper battery drain.

 Caliper Interface Description [LOW LEVEL DESCRIPTION OF THE

CALIPER DRIVER]

 * The caliper outputs 6 nibbles in 8.9 milliseconds. The first 5 nibbles

are the magnitude with LSB first. When set to inches, the LSB

 is 0.5 thou. The next larger bit has a value of 1 thou. All larger bits are in

units of whole thous. When set to mm, the LSB is 0.01 mm

 * Nibble 6, LSB is the sign bit. if 0, the data is positive. If 1, the data is

negative. MSB flags thou (1) versus mm(0)

 * The data bursts arrive every 120 milliseconds.

 * Between data burst, the clock is low as seen by the Arduino. It then

goes high in preparation for the first falling edge which will signify the

first data bit

 * more information can be found in the comments next to the code

 */

R. G. Sparber January 28, 2017 Page 9 of 150

[DEFINITION OF ALL VARIABLES]

boolean noReadyPrompt; //turns off "Ready" prompt on LCD within

LocalMinRead()

boolean foundRoom; //used to indicate that a blank space was found in

the gage block array

boolean leave; //used to exit calibration mode

boolean cd; //caibrated data flag

boolean flat; //flag that is true if jaws were not moving just before lift off

from measured surface

boolean changeMade;//flag used in review of gage_blocks[] review

boolean rejectBlock;//flag in a calibration function

boolean fractionalDisplay = false;//default is false

boolean gonogoFlag = false;//default is go/no go is disabled

boolean supressUL_CMD=true;//flag to tell displayAnswer that this is

the first time UL/CMD shown so supress radius info

boolean restart = false;//flag set true when the command state has

changed. It is cleared to false at the top of loop()

R. G. Sparber January 28, 2017 Page 10 of 150

int i; //bit counter and in do loop; is 16 bits

int ii; //in do loop

int j; //in do loop

int k; //used in sort

int sign; //sign of data

int units; //mm or thou. See also the two #define lines below

int oldUnits; //holding register for previous units value

int gng_oldUnits;//same as oldUnits but used in go/no go function and

must not conflict with oldUnits

int qaz; //scrach space used in gage block rounding function and in

gonogo()

int edc;//used by factor()

int intInteger; //used in 0.5 round off function

int nextOpen; //pointer to next open location in calibration array

int clockpin = 3; // caliper interface circuit's clock connects to this pin

int datapin = 9; // caliper interface circuit's data connects to this pin

int caliperDisable = 10; //tristate pin to caliper interface.

R. G. Sparber January 28, 2017 Page 11 of 150

int speedLimit = 100; //maximum speed in thou per second of jaws just

before touchdown before warning is displayed

int command = 6; //holds user command; see commandPortal();

initialized to no command requested

int oldCommand;

int odID = 1;//flag that tells loop to do just OD, just ID, or both -

ODandID; default is OD

int oldodID;//used by go/no go to save old odID value

//int OD = 1; THESE ARE DEFINED WITH #DEFINES

//int ID = 2;

//int ODandID = 3;

int sixteenths;

int thirtyseconds;

int sixtyforths;

int denominator;

int numerator;

R. G. Sparber January 28, 2017 Page 12 of 150

long value; // variable to build up the bits that will be the magnitude of

the data; it is 32 bits

long bitstage; //position newest data bit before placing in value; it is 32

bits

long thouLimit = 100; // minimum distance in thou calipers must open

to start a new cycle

long mmLimit = 2.54; // minimum distance in mm calipers must open to

start a new cycle

long Limit; //distance calipers must open to start a new cycle

long tempmicros; //scratch variable to hold incremental time in

microseconds

long time_newResult; //time stamp when "newResult" collected

long time_oldResult; //time stamp when "oldResult" collected

long time_oldestResult; //time stamp when "result" collected the time

before oldResult

long t1; //time stamp just as jaws stopped moving

long t2; //time stamp one measurement before jaws stopped moving

long microStartTime; //time in microseconds at start of program

modified to prevent wrap around of timer to zero

long milliStartTime; //time in milliseconds at start of program modified

to prevent wrap around of timer to zero

R. G. Sparber January 28, 2017 Page 13 of 150

long microDelta; //delta t from microNow()

long milliDelta; //delta t from milliNow()

float velocity; //velocity of jaws closing in thou per second

float newResult; //final caliper reading

float oldResult = 0; //previous caliper reading

float oldestResult = 0; //caliper reading two times back

float thouResult; //used by makeThou() to insure value is in thou

float mmResult;// used by makeMM() to insure value is in mm

float x1; //position of jaws just as they stopped moving

float x2; //position of jaws one snapshot before they stopped moving

float jitterLimit; //used in localMinRead to prevent false local min due to

jitter

float actual; //actual value used to determine gage block value during

calibration

float fractional; //fractional part of a number

float floatInteger; //integer value but in a float variable

R. G. Sparber January 28, 2017 Page 14 of 150

float radius; //used during wait to unlock

float roundToHalf; //variable used within roundToHalfThou and

roundToHalf_mm() functions

float displayedAnswer; //locks in value displayed and is used to insure

radius is consistent

float gage_blocks[10]; //an array of gage block values used for

calibration

float actual_results[10]; //an array of actual results when gage blocks

measured

float gageBlock; //temporary storage of nominal gage block value

float keyActual; //temporary storage used in sorting routine

float keyBlock; //temporary storage used in sorting routine

float ref;//used in limitAndPortalCheck

float wsx;//used by roundToInteger()

float rfv;//used by roundToInteger()

float lowerLimit;

float upperLimit;

float tempLimit;

R. G. Sparber January 28, 2017 Page 15 of 150

//String button = "inch/mm"; //could use an an experiment to see how

much this saves.

[DEFINING SOME SYMBOLIC VALUES]

#define UNIT_MM 0

#define UNIT_THOU 1

#define onlyOD 1

#define onlyID 2

#define ODandID 3

[TELL COMPILER WHAT HARDWARE DRIVER(S) TO INCLUDE]

// include the library code:

#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins [DEFINES

HOW I WIRED THE DISPLAY]

LiquidCrystal lcd(7, 6, 5, 4, 8, 2); //pin 3 was swapped for pin 8 because

I wanted pin 3 for caliper clock; later found out it was not necessary

R. G. Sparber January 28, 2017 Page 16 of 150

void setup() [ONE TIME SET UP OF FLAG, ARRAYS OF DATA, DISPLAY,

AND CALIPER INTERFACE]

{

 //Serial.println("entering setup");

 noReadyPrompt=false; //most of the time we want the Ready prompt

 // initialize calibration array with the value 10000 which is larger than

can be input by caliper. So 10000 is a flag saying this location is free

 for (i=0; i<10;i++)

 {

 gage_blocks[i]=10000;

 actual_results[i]=10000;

 }

 // Initialize the serial communication with the computer, at 9600

bits/second

 Serial.begin(9600);

 lcd.begin(16, 2); // set up the LCD's number of columns and rows

 // set up the caliper interface pins

R. G. Sparber January 28, 2017 Page 17 of 150

 pinMode(clockpin, INPUT); //Caliper clock input

 pinMode(datapin, INPUT); //Caliper data input

 // set up the tri-state control to the caliper interface

 pinMode (caliperDisable, OUTPUT); //caliperDisable will be low to

power up the interface and tristated when the Arduino is off. Can be set

high to disable too.

 digitalWrite(caliperDisable,LOW); //SET CALIPER INTERFACE TO

ACTIVE AND LEAVE IT THERE

 lcd.print (" Caliper Boost"); [THIS IS THE FIRST THING DISPLAYED ON

LCD; WE ARE TALKING TO THE LCD DRIVER WHICH TALKS TO THE LCD

HARDWARE]

 lcd.setCursor(0,1); //print next line on second row

 lcd.print (" Version 1.5 "); //displays version only when Arduino

powers up

 delay(3000);

 lcd.clear();

 lcd.print(" UnLock/CoMmanD");

 fetchReading();//get units at power up and use it to init oldUnits

R. G. Sparber January 28, 2017 Page 18 of 150

 oldUnits = units; //this prevents us from going right into command

mode

} //end of setup

void initLoop()//initialize loop [ALL OF THE CODE IS HERE; THIS IS MY

LAST RED COMMENT]

{

 restart = false;//be sure restart flag is cleared

 initCommandPortal();//sets command to 6 and sets oldUnits to current

value. Is used by next function

}

boolean measureAnOD()//will return the restart flag which, if true,

means to go Top:

R. G. Sparber January 28, 2017 Page 19 of 150

{

 //caliper jaws have to close by Limit before we start to look for local

minimum;

 //also look for command to run.After command runs, it will return

here.

 if(restart){

 return restart;

 }//after a command is run, restart loop() THIS WAS goto Top BUT WITH

NEW STRUCTURE, TOP IS NOT DEFINED SO JUST RETURN

 startODmeasPrompt(); //last measurement persists on display until

caliper jaws start to close. When they stop closing

 //and start opening, we lock in OD measurement

 noReadyPrompt = false;//tells next function to output "to meas."

prompt

 initCommandPortal();//sets command to 6 and sets oldUnits to current

value. Is used by next function

 localMinRead(); //prompt user, monitors caliper for local minimum

and detect a possible push of inch/mm which means

 //command will be executed. When done, we will return to this point in

the loop; output is oldResult

R. G. Sparber January 28, 2017 Page 20 of 150

 if(restart){

 return restart;

 }//after a command is run, restart loop() THIS WAS goto Top BUT WITH

NEW STRUCTURE, TOP IS NOT DEFINED SO JUST RETURN

 interpolation(); //improve accuracy of caliper reading using gage

blocks; input and output are oldResult; pass through if data not present

 displayAnswer(); //display best reading; input is oldResult and output

is displayAnswer which is what is displayed

 displayRadiusAndWait();//radius is displayed THIS WAS AT THE TOP

BUT MAYBE IT MAKES MORE SENSE DOWN HERE

}

void measureAnID()//no need to return restart flag because next

command in loop()is restart

{

R. G. Sparber January 28, 2017 Page 21 of 150

 //caliper jaws have to open by Limit before we start to look for local

maximum;

 //also looking for command to run. After command runs, it will return

here.

 if(restart){

 return;

 }//after a command is run, restart loop() THIS WAS goto Top BUT WITH

NEW STRUCTURE, TOP IS NOT DEFINED SO JUST RETURN

 startIDmeasPrompt(); //last measurement persists on display until

caliper jaws start to open. When they stop opening

 //and start closing, we lock in ID measurement

 noReadyPrompt = false;//tells next function to output "to meas."

prompt

 initCommandPortal();//sets command to 6 and sets oldUnits to current

value. Is used by next function

 localMaxRead(); //monitor caliper for local maximum; then signal we

are ready for new local minimum;

 //also looking for command to run.After command runs, it will return

here.

 if(restart){

R. G. Sparber January 28, 2017 Page 22 of 150

 return;

 }//after a command is run, restart loop() THIS WAS goto Top BUT WITH

NEW STRUCTURE, TOP IS NOT DEFINED SO JUST RETURN

 interpolation(); //improve accuracy of caliper reading using gage

blocks; input and output are oldResult; pass through if data not present

 displayAnswer(); //display best reading; input is oldResult and no

output to program

 //hold displayed result until user signals for a new reading or signals to

enter calibration mode

 //when user has signaled that they are done with last reading. See if

they want to enter calibration mode or take another reading

 displayRadiusAndWait();//radius is displayed THIS WAS AT THE TOP

BUT MAYBE IT MAKES MORE SENSE DOWN HERE

}

R. G. Sparber January 28, 2017 Page 23 of 150

void jitterAndPortalCheck() //this code ignores caliper output jitter

and holds until movement is more than jitterLimit; is also opportunity

for user to signal they want to input a command:

{

 //oldUnits = units; //DONE IN INITCOMMANDPORTAL BEFORE UNLOCK

DISPLAYED SO BEFORE USER CAN CHANGE IT save state of inch/mm

button before starting scan for change within commandPortal()

 do

 {

 fetchReading();

 //Serial.print("444 oldUnits = ");

 //Serial.println(oldUnits);

 //Serial.print("444 units = ");

 //Serial.println(units);

R. G. Sparber January 28, 2017 Page 24 of 150

 commandPortal(); //check to see if inch/mm pushed while waiting for

movement greater than jitter. commandPortal will call command and

when

 //done will return with command = 6

 if (units==UNIT_MM) //if true, caliper is set to mm so max jitter is +/-

0.01 mm

 {

 jitterLimit=0.02;

 }

 else {

 jitterLimit = 1.0;

 } //otherwise we are in thou so max jitter is +/- 0.5 thou

 }

 while (abs(oldResult - newResult)< jitterLimit); //consider the caliper

not moved if jaws moved less than jitterLimit. command value not tested

 //because it will execute command if requested and then come back

when done.

}

R. G. Sparber January 28, 2017 Page 25 of 150

void jitterCheck() //this code ignores caliper output jitter and holds

until movement is more than jitterLimit;

//input is oldResult; output is newResult

{

 oldUnits = units; //save state of inch/mm button before starting scan

for change within commandPortal()

 do

 {

 fetchReading();//get new value for newResult

R. G. Sparber January 28, 2017 Page 26 of 150

 if (units==UNIT_MM) //if true, caliper is set to mm so max jitter is +/-

0.01 mm

 {

 jitterLimit=0.02;

 }

 else {

 jitterLimit = 1.0;

 } //otherwise we are in thou so max jitter is +/- 0.5 thou

 }

 while (abs(oldResult - newResult)< jitterLimit); //consider the caliper

not moved if jaws moved less than jitterLimit

}

void limitAndPortalCheck() //this code ignores caliper output until

jaws move more than Limit;

R. G. Sparber January 28, 2017 Page 27 of 150

//is also opportunity for user to signal they want to input a command

//no inputs. Outputs are placing "Unlock" in lower right corner of LCD

display and running commandPortal

//if units change.

{

 fetchReading();//get newResult and units

 oldUnits = units;//units before prompt displayed

 makeThou();//insure newResult is in thou; output is thouResult

 oldResult = thouResult;//jaw position before prompt displayed

 lcd.setCursor(10,1);//put cursor on bottom line in character location

11

 //note that line is not cleared first. Radius is displayed at the start of

this line

 lcd.print("UL/CMD");//text ends up in the lower right corner of display

 //Serial.println("UL/CMD");

R. G. Sparber January 28, 2017 Page 28 of 150

 do{ //scan caliper for jaws moved more than Limit or units change

 fetchReading();//get newResult and units

 makeThou();//insure newResult is in thou; output is thouResult

 if (units != oldUnits)//if user pushed inch/mm button

 {

 commandPortal();//process command and return here

 return;//leave function, we are done

 }

 }

 while(abs(thouResult - oldResult) < thouLimit);//both Results are in

thou regardless of state of units

 //Serial.print(" 888 thouResult =");

 //Serial.println(thouResult);

 //Serial.print("888 oldResult =");

 //Serial.println(oldResult);

}

R. G. Sparber January 28, 2017 Page 29 of 150

void limitCheck() //this code waits until jaws move more than Limit;

//no inputs.

{

 fetchReading();//get newResult and units

 oldUnits = units;//units before prompt displayed

 makeThou();//insure newResult is in thou; output is thouResult

 oldResult = thouResult;//jaw position before prompt displayed

 do{ //scan caliper for jaws moved more than Limit or units change

 fetchReading();//get newResult and units

 makeThou();//insure newResult is in thou; output is thouResult

 }

 while(abs(thouResult - oldResult) < thouLimit);//both Results are in

thou regardless of state of units

R. G. Sparber January 28, 2017 Page 30 of 150

}

void makeThou() //input is units and newResult; output is thouResult in

thou

{

 if (units == UNIT_MM) //if in mm, convert to thou

 {

 thouResult = newResult*39.37008; //newResult was in mm so convert

to thou

 }

 else

 {

R. G. Sparber January 28, 2017 Page 31 of 150

 thouResult = newResult; //newResult was in thou so no change

 }

}

void makeMM() //input is units and newResult; output is mmResult in

mm

{

 if (units == UNIT_THOU) //if in thou, convert to mm

 {

 mmResult = newResult/39.37008; //newResult was in thou so convert

to mm

 }

 else

 {

R. G. Sparber January 28, 2017 Page 32 of 150

 mmResult = newResult; //newResult was in mm so no change

 }

}

void initCommandPortal() //initializes commandPortal() environment

before commandPortal() is run inside the lock loop

{

 command = 6; //initialize to show no command requested

 fetchReading();//get new current state of units

 oldUnits = units; //record inital state of the inch/mm button

}

R. G. Sparber January 28, 2017 Page 33 of 150

void exitCommandPortalQ() //looks for change in inch/mm state when

jaws more than 1/2" apart and if seen, sets command back to 6

{

 makeThou();//insure that caliper jaws distance is in thou; output is

thouResult

 if (units != oldUnits && thouResult > 500)

 {

 command = 6;

 }

 //if no change in state of units, command is left at previous value

}

R. G. Sparber January 28, 2017 Page 34 of 150

void commandPortal() //accept user commands; place this function in

each lock routines.

//Run initCommandPortalal()before entering wait loop.

//If the command state changes, the restart flag is set true. This

//causes loop() to restart so we avoid being in one command state while

finishing

//the execution of the previous state.

/*

 The user presses the inch/mm button while in the lock state in order to

tell the software

 they want to run a function. Then they move the jaws to one of the

following positions

 and push the inch/mm button a second time.

R. G. Sparber January 28, 2017 Page 35 of 150

 We enter function with units set to oldUnits. We must extit with the

same value.

 * if they want to input gage blocks for calibration, then open the jaws to

between 0.5" and 1.5"; called state 1

 * if they want to run the system as a go/no-go tester, then open the jaws

to between 1.5" and 2.5"; called state 2

 * if they want to average a series of readings, then open the jaws to

between 2.5" and 3.5"; called state 3

 * to just change between mm and inches, have the jaws set less than 0.5"

 * if they are already in one of these functions, then ack request and

change command to 6

 */

{

 fetchReading(); //see if user has pushed the inch/mm button when the

jaws were more than 0 apart; if not, return

 //Serial.print("345 units =");

 //Serial.println(units);

R. G. Sparber January 28, 2017 Page 36 of 150

 //Serial.print("347 oldUnits =");

 //Serial.println(oldUnits);

 if (units == oldUnits)// if units didn't change, just return

 {

 return;

 }//else units did change

 //Serial.print("44 newResult = ");

 //Serial.println(newResult);

 makeThou();//insure that we are testing thou for jaws spacing

 //Serial.print("44 thouResult = ");

 //Serial.println(thouResult);

 if (thouResult < 500)//to get here, units had to have changed; if jaws

less than 1/2" apart, return. The user just wanted to change units and

not do a command

 {

R. G. Sparber January 28, 2017 Page 37 of 150

 return;

 }

 restart = true;//set flag to tell loop() to restart because a command

state has been changed

 // otherwise button has been pushed with jaws more than 1/2" apart so

enter Command Mode with units != oldUnits

 if(command == 6)//if no command is active, we are trying to enter a

command

 {

 lcd.clear();

 lcd.print(" Command Mode"); //tell user they are in command mode

 lcd.setCursor(0,1);

 lcd.print(" Select option."); //user should move jaw into position and

press inch/mm again

 delay(1000);

 //user has pushed inch/mm button while in lock so now scan for

second push of inch/mm button and record caliper jaw position

R. G. Sparber January 28, 2017 Page 38 of 150

 lcd.clear();

 lcd.print("Cal:1 Fract:2");

 lcd.setCursor(0,1);

 lcd.print("OD/ID:3 GonoGo:4"); //user should move jaw into position

and press inch/mm again

 do //monitor the inch/mm button for state changes and then act on

newResult value

 {

 fetchReading(); //get current units state and jaw position

 }

 while (units != oldUnits);

 //exit scan when inch/mm pushed second time so we are back to

original state of units

 //newResult tells us which command the user wants to run.

 makeThou(); //be sure caliper's value is in thou for following test;

output is thouResult

R. G. Sparber January 28, 2017 Page 39 of 150

 lcd.setCursor(0,1);//prepare to change second line of display

 if (thouResult > 500 && thouResult < 1500) //user want to go to

calibration

 {

 command = 1;

 lcd.clear();

 lcd.print(" You chose");

 lcd.setCursor(0,1);

 lcd.print(" Calibration ");

 delay(2000);

 calibrationMode();//run cal mode and then come back here with

command = 6; return will put us back where we started

 unitCheck();//insure caliper set to same units as when user entered

 return;//this should cause us to return from commandPortal()

 }

R. G. Sparber January 28, 2017 Page 40 of 150

 if (thouResult > 1500 && thouResult < 2500) //user want to go to

fractions test

 {

 command = 2;

 //Serial.println("command = 2");

 lcd.print(" You chose");

 lcd.setCursor(0,1);

 lcd.print(" Fractions ");

 delay(2000);

 fractionsQ();//entering this function toggles flag on and off

 command = 6;//this line should go at end of fractions function when it

is written

 unitCheck();//insure caliper set to same units as when user entered

 return;//this should cause us to return from commandPortal()

 }

 if (thouResult > 2500 && thouResult < 3500) //user want to go to

OD_ID selection function

 {

R. G. Sparber January 28, 2017 Page 41 of 150

 command = 3;

 lcd.clear();

 lcd.print(" You chose");

 lcd.setCursor(0,1);

 lcd.print(" OD and/or ID ");

 delay(2000);

 OD_ID();//run OD_ID mode and then come back here; return will put

us back where we started

 command = 6;//this line should go at end of averaging function when

it is written

 return;//this should cause us to return from commandPortal()

 }

 if (thouResult > 3500 && thouResult < 4500) //user want to go to

Go/No-Go selection function

 {

 command = 3;

 lcd.clear();

 lcd.print(" You chose");

R. G. Sparber January 28, 2017 Page 42 of 150

 lcd.setCursor(0,1);

 lcd.print(" Go/No Go");

 delay(2000);

 gonogo();//run gonogo() and then come back here; return will put us

back where we started

 command = 6;//this line should go at end of averaging function when

it is written

 return;//this should cause us to return from commandPortal()

 }

 }

 else //command not equal to 1, 2, or 3 so am in a command function

and received a push of inch/mm button so user wants to exit function

 {

 lcd.clear();

 lcd.print("Exit requested.");

 lcd.setCursor(0,1);

 lcd.print("Please wait.");

 command = 6; //set flag to say we should not be in a command

function

R. G. Sparber January 28, 2017 Page 43 of 150

 unitCheck();//insure caliper set to same units as when user entered

 }

}

//end of commandPortal()

void fractionsQ() //accessed with command = 4; entering this function

toggles fractionalDisplay flag on and off

{

 //Serial.print("949 fractionalDisplay =");

 //Serial.println(fractionalDisplay);

 lcd.clear();

 lcd.print("Fractions");

R. G. Sparber January 28, 2017 Page 44 of 150

 lcd.setCursor(0,1);

 if (!fractionalDisplay){

 lcd.print("will be on.");

 fractionalDisplay = true;

 }

 else

 {

 lcd.print("will be off.");

 fractionalDisplay = false;

 }

 delay(2000);

 lcd.clear();

}//end of fraactionsQ()

R. G. Sparber January 28, 2017 Page 45 of 150

void fractionDisplay()//input is units and oldResult; output to LCD is

integer and "-" if integer non-zero.

//output variables are numerator and denominator

{

 newResult = oldResult;

 makeThou();//input is newResult and units; insure number being

displayed is in thou; output is thouResult

 lcd.clear(); //start at top line, column 0

 roundToHalfThou(thouResult);

 lcd.print(thouResult/1000,4);//print decimal value in upper left corner

R. G. Sparber January 28, 2017 Page 46 of 150

 intInteger = thouResult/1000;//extract the fractional part of

unitsThou; intInteger is (int)

 fractional = thouResult/1000 - intInteger;

 if (fractional == 0){//don't display a fraction if it is zero

 return;

 }

 //Serial.print("thouResult = ");

 //Serial.println(thouResult);

 //Serial.print("intInteger = ");

 //Serial.println(intInteger);

 //Serial.print("fractional = ");

 //Serial.println(fractional);

 //at most thirtyseconds; fractional is non-zero

R. G. Sparber January 28, 2017 Page 47 of 150

 wsx = 32*fractional;//convert to at most 32nds; start by finding

number of 32nds in the fractional part; wsx is float

 //Serial.print("wsx = ");

 //Serial.println(wsx);

 roundToInteger();//input is wsx (float) and output is qaz (int); round

to integer

 if (qaz == 32){//increment integer part and zero fractional part

 intInteger = intInteger + 1;

 qaz = 0;

 }

 //Serial.print("1 qaz =");

 //Serial.println(qaz);

R. G. Sparber January 28, 2017 Page 48 of 150

 factor();//input is qaz and output is edc (int),the largest multiple of 2

that fits evenly into qaz

 //Serial.print("1 edc = ");

 //Serial.println(edc);

 numerator = qaz/edc;//reduce integer numerator by as many 2s as

possible

 denominator = 32/edc;//reduce denominator by same number of 2s

 lcd.setCursor(9,0);//top line, column 11

 if (intInteger != 0){//don't print a 0 integer

 lcd.print (intInteger);

 }

R. G. Sparber January 28, 2017 Page 49 of 150

 if (numerator == 0){

 return;

 } //supress fraction if numerator is 0; if number is 0.000, then print

blank

 //otherwise print fraction

 if (intInteger != 0){

 lcd.print ("-");//if integer is 0, don't print -; if numerator = 0 we would

not have gotten this far

 }

 lcd.print(numerator);//send fraction to LCD

 lcd.print("/");

 lcd.print(denominator);

}//end of fractionDisplay()

R. G. Sparber January 28, 2017 Page 50 of 150

void OD_ID()//sets option of OD only, ID only, or both

{

 lcd.clear();

 fetchReading();

 oldUnits = units;//record units state before asking for inch/mm to be

pushed

AskAgain:

 lcd.print("OD=1 ID=2 both=3");

 lcd.setCursor(0,1);

 lcd.print("Then inch/mm.");

 do{

R. G. Sparber January 28, 2017 Page 51 of 150

 fetchReading();//get newResult and units

 }

 while (units == oldUnits);//scan jaw position until units pressed.

 makeThou();//insure I get jaw position in thou. output is thouResult

 //Serial.print("thouResult =");

 //Serial.print(thouResult);

 if (thouResult > 500 && thouResult < 1500) //user want to go to only

measure OD

 {

 odID = onlyOD;

 lcd.clear();

 lcd.print("Measure just OD.");

 }

R. G. Sparber January 28, 2017 Page 52 of 150

 if (thouResult > 1500 && thouResult < 2500) //user want to only

measure ID

 {

 odID = onlyID;

 lcd.clear();

 lcd.print("Measure just ID.");

 }

 if (thouResult > 2500 && thouResult < 3500)

 { //user want to measureboth ID and OD

 odID = ODandID;

 lcd.clear();

 lcd.print("Measure OD & ID.");

 }

 if (thouResult < 500 || thouResult > 3500){

R. G. Sparber January 28, 2017 Page 53 of 150

 //if not 1 2, or 3, repeat initial prompt

 goto AskAgain;

 }

 lcd.setCursor(0,1);

 lcd.print("Now push inch/mm");

 do{

 fetchReading();

 }

 while (units != oldUnits);//scan jaw position until units pressed.This

puts units back to original value

 lcd.clear();

}//end of OD_ID()

R. G. Sparber January 28, 2017 Page 54 of 150

void unitCheck()//insure user sets caliper back to same units as when

oldUnits was defined

{

 fetchReading();//get current value for units

 if(units == oldUnits){

 return;

 }//otherwise, user must push inch/mm button

 lcd.clear();

 lcd.print("Please push");

 lcd.setCursor(0,1);

 lcd.print("inch/mm button. ");

 do {

 fetchReading();

 }

 while(units != oldUnits);//hold until user pushes inch/mm button

R. G. Sparber January 28, 2017 Page 55 of 150

}

float roundToHalfThou(float roundToHalf) //input and output is passed

as variable "roundToHalf"

{

 //round to the nearest 0.5

 if (roundToHalf == 0)

 {

 return roundToHalf; //prevent divide by zero and no need to round

 }

 sign = abs(roundToHalf)/roundToHalf; //pull out sign

R. G. Sparber January 28, 2017 Page 56 of 150

 intInteger = abs(roundToHalf); //get the integer part of roundToHalf

which is float qaz1

 //Serial.print("intInteger= ");

 //Serial.println(intInteger);

 newResult = intInteger; //convert integer back to float

 //Serial.print("newResult= ");

 //Serial.println(newResult);

 fractional = abs(roundToHalf) - newResult; //now have fractional part

in float

 //Serial.print("fractional= ");

 //Serial.println(fractional);

 if (fractional < 0.25)

 {

 roundToHalf = intInteger; //round down so oldResult will end in .0

 //Serial.println("<0.25");

R. G. Sparber January 28, 2017 Page 57 of 150

 }

 if (fractional >= 0.25 && fractional <0.75)

 {

 roundToHalf = intInteger + 0.5; //number will end in 0.5

 //Serial.println(">= 0.25 && <0.75");

 }

 if (fractional >= 0.75)

 {

 roundToHalf = intInteger + 1; //round up to next highest thou. number

will end in .0

 //Serial.println(">= 0.75"); //do something when var equals 2

 }

 roundToHalf = sign*roundToHalf;//restore sign

 //Serial.print("roundToHalf= ");

 //Serial.println(roundToHalf);

R. G. Sparber January 28, 2017 Page 58 of 150

 //roundToHalf has now been rounded to the nearest 0.5 thou

 return roundToHalf;

} //end of roundToHalf function

void roundToHun_mm()//input and output are roundToHalf; input is in

mm in the format i.xx; output is rounded to the nearest hundreth of a

mm

{

 if (roundToHalf == 0)//prevent divide by zero and no need to round

 {

 return;

 }

 //round result to the nearest hundreth of a mm; below .xx5 rounds

down

R. G. Sparber January 28, 2017 Page 59 of 150

 sign = abs(roundToHalf)/roundToHalf; //pull out sign. Example: -1.234

so sign = -1

 intInteger = abs(roundToHalf*1000);//with sign removed, round to

nearest hundreth; first make thouthanths place an integer.Example:

1234

 fractional = (intInteger + 5)/10;//Example: 1239/10 = 123.9

 intInteger = fractional;//take justinteger part; Example: 123.9 becomes

123 (an integer)

 roundToHalf = sign*intInteger;//put back sign and make float

 roundToHalf= roundToHalf/100;//divide by 100 to return to original

value except now rounded; Example: -1 * 123/100 as float is -1.23

}

R. G. Sparber January 28, 2017 Page 60 of 150

void roundToInteger()//input is wsx (float) output are qaz (integer)

{

 qaz = 10*wsx + 5; //if fractional part is > half, this will round up

 qaz = qaz/10;

}

void displayRadiusAndWait() //prints radius plus scans caliper output

looking for calipers to open by "Limit"; also contains commandPortal

{

 bottomLineClear();

 if(command != 1 && !fractionalDisplay && !supressUL_CMD &&

!gonogoFlag){ //if not in calibration mode, displaying fractions, gonogo,

R. G. Sparber January 28, 2017 Page 61 of 150

 //or doing first display of UL/CMD, then use standard prompt

 lcd.setCursor(0,1);//set up to print to second line of LCD

 if (units==UNIT_THOU){

 roundToHalf = displayedAnswer/2; //calculate radius in thou

 roundToHalfThou(roundToHalf);//round result to the nearest half

thou

 lcd.print(roundToHalf/1000,4);//display radius in bottom right

corner

 }

 else //caliper is set to mm

 {

 roundToHalf = displayedAnswer/2;//calculate radius in mm

 roundToHun_mm();//round result to the nearest hundredth of a mm

 lcd.print(roundToHalf,2);//display radius in bottom right corner

 }

 lcd.print ("r "); //tell user to open jaws. After jaws opened by at least

Limit, this prompt is replaced by startIDmeasPrompt

 }

R. G. Sparber January 28, 2017 Page 62 of 150

 supressUL_CMD = false; //from now on, we will not supress radius due

to UL/CMD

 limitAndPortalCheck();//reads units and jaw position, prints Unlock

prompt, and then holds until jaws moved more than limit

 //and then runs commandPortal().

 //Serial.println("Unlock2");

}

//end of displayRadiusAndWait()

R. G. Sparber January 28, 2017 Page 63 of 150

void localMinRead() //scans caliper output looking initial movement of

more than jitter and then for local minimum

{

 /*Definition of terms

 newResult - newest caliper jaw position

 oldResult - reading before newResult that has an oldestResult different

than itself; if oldResult does not change for a while,

 only the first reading is recorded along with its time stamp

R. G. Sparber January 28, 2017 Page 64 of 150

 oldestResult - reading directly before oldResult that is not equal to

oldResult

 There are the following cases:

 1. new > old < oldest means that old is our local minimum so return

with this value

 2. new > old > oldest means continuously rising; keep looking

 3. new < old < oldest means continuous falling; keep looking

 4. new = old > oldest means it was rising and then stopped; keep

looking

 5. new = old < oldest means it was falling and then stopped; keep

looking

 */

 setMilli_t0();//set t=0 in milliseconds

 if (!noReadyPrompt)// during calibration phase we use different Ready

prompt so supress this one

 {

R. G. Sparber January 28, 2017 Page 65 of 150

 lcd.clear();

 lcd.print("Measuring OD:");

 lcd.setCursor(0,1);//print to bottom line

 lcd.print((char)0b01111111); //this is an arrow <-

 lcd.print(" and then ");

 lcd.print((char)0b01111110); //this is an arrow ->

 }

 jitterCheck();//wait until jaws move more than jitter so we do not react

to jitter which can look like a local minimum

 //[L1]

 //take distance readings and time stamp each one. Then look for local

minimum. When found, use last two time stamps to calculate velocity on

impact

 // Initialize search by defining first point, newResult and its time stamp

is 0.

R. G. Sparber January 28, 2017 Page 66 of 150

 setMilli_t0(); //set t=0 on millisecond timer and store as milliStartTime

which is used by milliNow()

 fetchReading(); //caliper really moving so returns newResult; establish

first reading and store as oldResult

 milliNow();//get time now wrt t=0; milliDelta will be zero or very close

to it

 time_newResult = milliDelta; //newResult now has its corresponding

time stamp: time_newResult

 oldResult = newResult; //initialize oldResult and oldestResult as

equal to newResult and do the same with their time stamps

 time_oldResult = time_newResult;//we now have a flat line as our

starting case

 oldestResult = newResult;

 time_oldestResult = time_newResult;

 //Going into the search loop, we have oldResult and oldestResult set

equal to newResult and their corresponding time stamps are also equal

 while(true){ //Search Process runs continuously until local minimum

detected

R. G. Sparber January 28, 2017 Page 67 of 150

 //see if newResult = oldResult. If so, then leave oldResult and

oldestResults unchanged because we are on a flat spot; otherwise, we

 //are not on a flat spot so shift the data points over

 if(newResult != oldResult){

 oldestResult = oldResult; //SHIFT OVER THE LAST TWO DATA POINTS

since newResult is smaller than the oldResult, save previous oldResult as

oldestResult

 time_oldestResult = time_oldResult; //save previous oldResult time

stamp as oldestResult time stamp

 oldResult = newResult; //PREVIOUS NEW IS NOW OLD since new

reading is smaller than the oldResult, save it as oldResult

 time_oldResult = time_newResult; //save time of newResult as

time_oldResult too

 }//if newResult does equal oldResult, then we don't change them but

do get a fresh copy of newResult

 fetchReading();//get new newResult

 milliNow(); //get time since t=0

R. G. Sparber January 28, 2017 Page 68 of 150

 time_newResult = milliDelta;

 //we now have newResult which was just taken, oldResult and

oldestResult that are from when they were not equal so not on a flat.

 if (newResult > oldResult && oldResult < oldestResult)//if new, old,

and oldest define a local minimum, calculate velocity at touchdown and

return

 {

 //impact velocity is calculated from the motion just before we

reached local minimum so will always be from oldest and old

 //Serial.print("oldestResult = ");

 //Serial.println(oldestResult);

 //Serial.print("oldResult = ");

 //Serial.println(oldResult);

 //Serial.print("time_oldestResult = ");

 //Serial.println(time_oldestResult);

 //Serial.print("time_oldResult = ");

 //Serial.println(time_oldResult);

R. G. Sparber January 28, 2017 Page 69 of 150

 velocity = abs(((oldestResult - oldResult)*1000)/(time_oldResult -

time_oldestResult)); //thou per second closure rate

 //Serial.print("velocity = ");

 //Serial.println(velocity);

 //Serial.print("111 local min velocity = ");

 //Serial.println(velocity);

 if (velocity > speedLimit) //if jaws were closed faster than

speedLimit thou per second, just warn user

 {

 lcd.setCursor(0, 1); //put warning message on second line

 lcd.print("Jaws hit at: ");

R. G. Sparber January 28, 2017 Page 70 of 150

 lcd.print(velocity);

 delay(1000); //warning displayed for 1 seconds

 }

 return;//we return with local minimum being oldResult

 }

 }

}

//end of localMinRead function

R. G. Sparber January 28, 2017 Page 71 of 150

void localMaxRead() //scans caliper output looking initial movement of

more than jitter and then for local maximum; output is oldResult

{

 /*Definition of terms

 newResult - newest caliper jaw position

 oldResult - reading before newResult that has an oldestResult different

than itself; if oldResult does not change for a while,

 only the first reading is recorded along with its time stamp

 oldestResult - reading directly before oldResult that is not equal to

oldResult

 There are the following cases:

 1. new < old > oldest means that old is our local maximum so return

with this value

 2. new > old > oldest means continuously rising; keep looking

 3. new < old < oldest means continuous falling; keep looking

 4. new = old > oldest means it was rising and then stopped; keep

looking

 5. new = old < oldest means it was falling and then stopped; keep

looking

R. G. Sparber January 28, 2017 Page 72 of 150

 */

 setMilli_t0();//set t=0 in milliseconds

 if (!noReadyPrompt)// during calibration phase we use different Ready

prompt so supress this one

 {

 lcd.clear();

 lcd.print("Measuring ID:");

 lcd.setCursor(0,1);//print to bottom line

 lcd.print((char)0b01111110); //this is an arrow ->

 lcd.print(" and then ");

 lcd.print((char)0b01111111); //this is an arrow <-

 }

 jitterCheck();//wait until jaws move more than jitter so we do not react

to jitter which can look like a local minimum

R. G. Sparber January 28, 2017 Page 73 of 150

 //[L1]

 //take distance readings and time stamp each one. Then look for local

minimum. When found, use last two time stamps to calculate velocity on

impact

 // Initialize search by defining first point, newResult and its time stamp

is 0.

 setMilli_t0(); //set t=0 on millisecond timer and store as milliStartTime

which is used by milliNow()

 fetchReading(); //caliper really moving so returns newResult; establish

first reading and store as oldResult

 milliNow();//get time now wrt t=0; milliDelta will be zero or very close

to it

 time_newResult = milliDelta; //newResult now has its corresponding

time stamp: time_newResult

 oldResult = newResult; //initialize oldResult and oldestResult as

equal to newResult and do the same with their time stamps

 time_oldResult = time_newResult;//we now have a flat line as our

starting case

 oldestResult = newResult;

R. G. Sparber January 28, 2017 Page 74 of 150

 time_oldestResult = time_newResult;

 //Going into the search loop, we have oldResult and oldestResult set

equal to newResult and their corresponding time stamps are also equal

 while(true){ //Search Process runs continuously until local minimum

detected

 //see if newResult = oldResult. If so, then leave oldResult and

oldestResults unchanged because we are on a flat spot; otherwise, we

 //are not on a flat spot so shift the data points over

 if(newResult != oldResult){

 oldestResult = oldResult; //SHIFT OVER THE LAST TWO DATA POINTS

since newResult is smaller than the oldResult, save previous oldResult as

oldestResult

 time_oldestResult = time_oldResult; //save previous oldResult time

stamp as oldestResult time stamp

 oldResult = newResult; //PREVIOUS NEW IS NOW OLD since new

reading is smaller than the oldResult, save it as oldResult

 time_oldResult = time_newResult; //save time of newResult as

time_oldResult too

R. G. Sparber January 28, 2017 Page 75 of 150

 }//if newResult does equal oldResult, then we don't change them but

do get a fresh copy of newResult

 fetchReading();//get new newResult

 milliNow(); //get time since t=0

 time_newResult = milliDelta;

 //we now have newResult which was just taken, oldResult and

oldestResult that are from when they were not equal so not on a flat.

 if (newResult < oldResult && oldResult > oldestResult)//if new, old,

and oldest define a local maximum, calculate velocity at touchdown and

return

 {

 //impact velocity is calculated from the motion just before we

reached local maximum so will always be from oldest and old

 velocity = abs(((oldestResult - oldResult)*1000)/(time_oldResult -

time_oldestResult)); //thou per second closure rate

 //Serial.print("111 local min velocity = ");

 //Serial.println(velocity);

R. G. Sparber January 28, 2017 Page 76 of 150

 if (velocity > speedLimit) //if jaws were opening faster than

speedLimit thou per second, just warn user

 {

 lcd.setCursor(0, 1); //put warning message on second line

 lcd.print("Jaws hit at: ");

 lcd.print(velocity);

 delay(1000); //warning displayed for 1 seconds

 }

 return;//we return with local maximum being oldResult

 }

 }//evaluate new data set

}//end of localMaxRead function

R. G. Sparber January 28, 2017 Page 77 of 150

void milliNow()//returns milliDelta

{

 milliDelta = millis() - milliStartTime;

 //Serial.print("999 milliDelta = ");

 //Serial.println(milliDelta);

 if (milliDelta >= 0)

 {

 return;

 }

 else

 {

 milliDelta = 2147483647 + milliDelta; //milliDelta is equal to or less

than zero so timer wrapped. Add maximum positive value for a long so

delta is correct

R. G. Sparber January 28, 2017 Page 78 of 150

 }

}

void recordBlock() //scans caliper output looking for local minimum.

Ignore downward, upward, and local maximum;

//if the data stops changing by less than jitter, keep reading for new

newResult; output is oldResult

{

 //flat = false; //initialize flag to say caliper jaws are moving

 setMilli_t0();//set t=0 in milliseconds

 //take distance readings and time stamp each one. Then look for local

minimum. When found, use last two time stamps to calculate velocity on

impact

 // INITIALIZE SEARCH BY DEFINING FIRST POINT, NEWRESULT first

point and time stamp it as t = 0

R. G. Sparber January 28, 2017 Page 79 of 150

 fetchReading(); //read caliper with result equal to newResult; establish

first reading and store as oldResult

 milliNow();//get time now wrt t=0 which is called milliDelta

 time_newResult = milliDelta;

 oldResult = newResult; //INITIALLY SET OLD = NEW UNTIL SEARCH

CYCLE STARTS. WE NOW HAVE A DEFINED NEW AND OLD RESULT

 time_oldResult = time_newResult;

 do //SEARCH CYCLE read the caliper looking for a local minimum

with respect to the first reading

 {

 //shift over readings so the last two are kept unless we are on a flat

spot

 while(newResult == oldResult){//on a flat spot so keep taking

newResult points until off of it; note that jitter will cause a state change

 fetchReading(); //read caliper with result equal to newResult

 milliNow();//get time now wrt t=0 which is called milliDelta

 time_newResult = milliDelta;

 }//proceed because new jaws are moving again

R. G. Sparber January 28, 2017 Page 80 of 150

 oldestResult = oldResult; //SHIFT OVER THE LAST TWO DATA POINTS

since newResult is smaller than the oldResult, save previous oldResult as

oldestResult

 time_oldestResult = time_oldResult; //save previous oldResult time

stamp as oldestResult time stamp

 oldResult = newResult; //PREVIOUS NEW IS NOW OLD since new

reading is smaller than the oldResult, save it as oldResult

 time_oldResult = time_newResult; //save time of newResult as

time_oldResult too

 do {//again check to see if jaws moving. If not, keep scanning until they

do but old and oldest are not changed. This covers case

 //rise followed by flat spot

 fetchReading();//GET FRESH NEWEST POSITION returns newResult

 milliNow();

 time_newResult = milliDelta;

 }

R. G. Sparber January 28, 2017 Page 81 of 150

 while (newResult == oldResult);//scan for new jaw position until jaws

move, even due to jitter

 if(newResult == oldResult){

 //Serial.println("flat");//should not see this result

 }

 if(newResult < oldResult && oldResult < oldestResult){

 //Serial.println("falling");

 }

 if(newResult > oldResult && oldResult > oldestResult){

 //Serial.println("rising");

 }

 if(newResult > oldResult && oldResult < oldestResult){

 //Serial.println("local min");

R. G. Sparber January 28, 2017 Page 82 of 150

 }

 if(newResult < oldResult && oldResult > oldestResult){

 //Serial.println("local max");

 }

 }// falling rising local

maximum

 while((newResult < oldResult && oldResult < oldestResult) ||

(newResult > oldResult && oldResult > oldestResult) || (newResult <

oldResult && oldResult > oldestResult)); //only stop looking when we

see local minimum

 //if we see downward, upward, or local maximum, keep looking

 //Serial.println(newResult);

 //Serial.println(oldResult);

 //Serial.println(oldestResult);

R. G. Sparber January 28, 2017 Page 83 of 150

 //I need that "equal to" part because when newResult < oldResult I set

oldResult=newResult and then

 //go back for another reading.

 //exit "do" when local minima found and stored as oldResult

 //calculate the caliper closing velocity next to see if local minima can

be trusted or if user smashed jaws together too fast

 //if (flat == true)//FLAT NEVER TRUE SO IF THIS WORKS, REMOVE

CODE

 //{

 //velocity = abs(((x2 - x1)*1000)/(t2 - t1)); //thou per second closure

rate

 //}

 //else

 //{ //we were not on a flat spot so can use last two data points to

calculate impact velocity

 velocity = abs(((oldestResult - oldResult)*1000)/(time_oldResult -

time_oldestResult)); //thou per second closure rate

 //}

R. G. Sparber January 28, 2017 Page 84 of 150

 //Serial.print("311 local min velocity = ");

 //Serial.println(velocity);

 if (velocity > speedLimit) //if jaws were closed faster than speedLimit

thou per second, just warn user

 {

 lcd.setCursor(0, 1); //put warning message on second line

 lcd.print("Jaws hit at: ");

 lcd.print(velocity);

 delay(1000); //warning displayed for 1 seconds

 }

}

//end of recordBlock()

R. G. Sparber January 28, 2017 Page 85 of 150

void setMicro_t0() //returns microStartTime that won't have wrap

problem

// This function provides a time stamp in microseconds that will not

wrap back to zero as long as the time from the start of

//measurement to end is less than about 30 minutes

{

 microStartTime = micros(); //record time in microseconds at start of

interval

}

void microNow() //returns microDelta which will not wrap in a

"reasonable" period of time

R. G. Sparber January 28, 2017 Page 86 of 150

{

 microDelta = micros() - microStartTime;

 if (microDelta > 0)

 {

 return;

 }

 else

 {

 microDelta = 2147483647 + microDelta; //microDelta is equal to or

less than zero so timer wrapped. Add maximum positive value for a long

so delta is correct

 }

}

R. G. Sparber January 28, 2017 Page 87 of 150

void setMilli_t0() //returns MiilliStartTime which will not wrap in a

"reasonable" period of time

// This function provides a time stamp in milliseconds that will not wrap

back to zero as long as the time from the start of

//measurement to end is less than about 23 days

{

 //Serial.println("entering setMilli");

 milliStartTime = millis(); //record time in millisseconds at start of

interval

}

R. G. Sparber January 28, 2017 Page 88 of 150

void fetchReading() //function does a single read of the caliper and

puts the result in newResult with units in the variable units

/* Remember that clock and data out of caliper are inverted by the

interface circuit. This means the clock is low when between data bursts

and that

 a falling edge marks the capture of valid data.

 Look for the start of the next data burst by monitoring the clock:

R. G. Sparber January 28, 2017 Page 89 of 150

 The clock must go from low [3] to high [4] after more than 8.9

microseconds to be the start of a new bust.

 clock bursts as seen at Arduino:_____/-last_burst-1\2______>9000

microseconds________3/4-next_burst-_______

 within each burst we have 24 falling clock edges to signal the 24 bits

 */

{

 while (digitalRead(clockpin)==HIGH) {

 }; //While clock HIGH, just wait.When clock goes low, we exit this line

of code. This event might be the final

 //falling edge of a data burst(between points 1 and 2).

 //tempmicros=micros()-microStartTime; //Since we left the above

"while" statement, the clock must have just gone low (a falling edge) and

might be at point 2;record present time in microseconds.

 setMicro_t0(); //replaces above line //microStartTime

was the time, in microseconds, at the start of the measurement cycle. If

micros() was between zero and 2E9, microStartTime equals that

micros() reading.

R. G. Sparber January 28, 2017 Page 90 of 150

 //If micros() was between 2E9 and maximum count of about 4E9, we

subtract 2E9. So in all cases, microStartTime is less than 2E9. This value

is more than 33.3 minutes,

 // I move it back by 33.3 minutes to prevent timer wrap around past 0

error. Each time I call up micros() I must subtract off microStartTime.

 while (digitalRead(clockpin)==LOW) {

 }; //We now just wait while clock is low. This might be the time between

data bursts (points [2] and [3]) but don't know yet.

 //if (((micros()-microStartTime)-tempmicros)>9000) //Since we left

the above "while" statement,the clock just went high again. If the clock

was low longer than 9000 microseconds, we are at the start of a

 microNow(); //this and the next line replace the one above

 if (microDelta > 9000) // new burst of data (point 3)so

time to collect data

 {

 decode(); //decode a data burst and store in newResult

 } //End of "if" statement that collects a data burst if we were at the start

of the burst.

R. G. Sparber January 28, 2017 Page 91 of 150

}

//end of fetchReading

void decode() //function reads the data burst after the first rising clock

transition has occurred and stores it in newResult

{

 sign = 1; //initialize sign to positive. It will only be changed if bit 20 is a

1 which means the sign is negative

 value = 0; //initial value to all zeros. It will hold final value.qwas

 units = UNIT_MM; //initialize units to mm. It will only be changed to

thou if bit 24 is a 1.

 // we enter the decode function with the clock high and will clock in the

first bit on the falling edge

 /* Clock during a data burst:

R. G. Sparber January 28, 2017 Page 92 of 150

 First clock nibble:________[3]/[4]-[a]\[b]_[c]/[d]-[e]\[f]_[g]/[h]-

[i]\[j]_[k]/[l]-[m]\[n]___________

 points [3] and [4] tie back to previous waveshape.

 */

 for (i=0;i<24;i++) //there are 20 bits holding the magnitude plus 4 with

overhead. We count from 0 to 19 because the LSB, i=0, is not shifted to

the left.

 {

 while (digitalRead(clockpin)==LOW) {

 } //this line is not needed for i=0 because we start out with clock high

at [a]. For the rest of the reads it gets us through the rising edge

 //which must be followed as a delimiter between falling edges

 while(digitalRead(clockpin)==HIGH){

 } //The falling edge is detected when this line of code is exited. For the

first nibble it is [a]\[b],[e]\[f],[i]\[j],[m]\[n].

R. G. Sparber January 28, 2017 Page 93 of 150

 if (digitalRead(datapin)==LOW) //Clock just fell so it is time to

theread data bit. If it is a 0, then there was a 1 out of the caliper. If it is a

0, we do nothing because

 { //"value" was initialized to all zeros so there is nothing

to change.

 if (i<20) //if the data bit is part of the magnitude, insert it into

"value" at the correct bit position

 {

 bitstage=0; //initialize staging area for newest data bit

 bitstage = 1<<i; //move data bit, which is a 1, into its correct

position; note that for i=0 there is no shift

 value|= bitstage; // logic OR places data bit within "value" using the

"compound OR" function

 }

 if (i==20) //the 21st bit (since starting count at 0, it is i=20), is the

sign bit. If we got this far in the logic, it has a value of 1 out of the caliper

so the sign is negative.

 //I set sign to -1. It will later multiply the value when in mm. CLEAN

UP CODE SO THOU USE SIGN THE SAME WAY

R. G. Sparber January 28, 2017 Page 94 of 150

 {

 sign=-1;

 }

 if (i==23) //the 24th bit (since starting count at 0, it is i=23), is the

units bit. If we got this far in the logic, it has a value of 1 out of the

caliper so the units are in thou

 {

 units=UNIT_THOU;

 }

 }

 }

 if(units==UNIT_MM)

 {

 newResult=(value*sign)/100.00;

 Limit=mmLimit; //caliper open distance to signal a new measurement

cycle set for mm

R. G. Sparber January 28, 2017 Page 95 of 150

 }

 else

 //units are thou

 {

 newResult=(((value >> 1)+ (value & 0x0001)* 0.5)*sign);

 Limit=thouLimit;//caliper open distance to signal a new measurement

cycle set for thou

 /* The LSB is half a thou so I first shift "value" over 1 bit to make the

number who thou. Then I extract the LSB from the original

 "value" and multiply it by half a thou. It is then added to the shifted

"value" so the digit to the right of the decimal can now be

 either 0 or 0.5. And finally, I multiply by the sign.

 */

 }

}

// end of decode()

R. G. Sparber January 28, 2017 Page 96 of 150

void displayAnswer() //format measured value and display on LCD in

mm or inches

{

 displayedAnswer = oldResult;//this insures that when I calculate

radius, I am using the correct value

 if(fractionalDisplay){

 fractionDisplay();

 }

 else //is not fractional display so show decimal

 {

 decimalDisplay();

 if (gonogoFlag)//if go/no go enabled (i.e. true), overwrite bottom line

with go/no go results

R. G. Sparber January 28, 2017 Page 97 of 150

 {

 thouResult = displayedAnswer;

 makeThou(); //regardless of state of caliper, insure we are working

in thou

 displayedAnswer = thouResult;

 lcd.setCursor(0,1);//go to bottom line

 if(displayedAnswer < lowerLimit){

 lcd.print("Under ");

 lcd.print((char)0b01111110); //this is an arrow ->>

 }

 if(displayedAnswer == lowerLimit){

 lcd.print("At lower limit.");

 lcd.print((char)0b01111110); //this is an arrow ->>

 }

R. G. Sparber January 28, 2017 Page 98 of 150

 if(displayedAnswer > upperLimit){

 lcd.print("Over ");

 lcd.print((char)0b01111110); //this is an arrow ->>

 }

 if(displayedAnswer == upperLimit){

 lcd.print("At upper limit.");

 lcd.print((char)0b01111110); //this is an arrow ->>

 }

 if(displayedAnswer > lowerLimit && displayedAnswer < upperLimit){

 lcd.print("OK ");

 lcd.print((char)0b01111110); //this is an arrow ->>

 }

R. G. Sparber January 28, 2017 Page 99 of 150

 limitCheck();//wait for jaws to move more than limit

 }

 }

}//end of displayAnswer

void topLineClear()//erase top line of LCD

{

 lcd.setCursor(0,0);//move to top line, first character

 lcd.print(" ");

 lcd.setCursor(0,0);//insure we are back to top line, first character

R. G. Sparber January 28, 2017 Page 100 of 150

}

void bottomLineClear()//erase bottom line of LCD

{

 lcd.setCursor(0,1);//move to bottom line, first character

 lcd.print(" ");

 lcd.setCursor(0,1);//insure we are back to bottom line, first character

}

R. G. Sparber January 28, 2017 Page 101 of 150

void decimalDisplay(){

 // displayedAnswer = oldResult;//this insures that when I calculate

radius, I am using the correct value THIS ACTION WAS MOVED TO

CALLING PROGRAM

 topLineClear();//erase top line of LCD

 lcd.setCursor(15,0); //put cursor in upper right corner

 if(cd==true)

 {

 //Serial.println("cd is true");

 lcd.print("*"); //a star in the upper right corner means displayed

number has been calibrated

 }

 else

 {

R. G. Sparber January 28, 2017 Page 102 of 150

 lcd.print("o"); //a - in the upper right corner means displayed number

has not been calibrated

 }

 //print oldResult to LCD

 lcd.setCursor(0,0);//print measurment on first line

 if (units==UNIT_MM)

 {

 lcd.print(oldResult, 2);//print with 2 places for mm

 lcd.print(" mm");

 }

 else

 {

 lcd.print(oldResult/1000, 4); //and 4 place for thou to right of decimal

 lcd.print(" inches");//top right character position is left unchanged

because that is where my interpolation indicator goes

R. G. Sparber January 28, 2017 Page 103 of 150

 }

} //end of decimalDisplay()

void startIDmeasPrompt()//tell user how to measure an ID

{

 //Serial.print("77 command= ");

 //Serial.println(command);

 //if(command == 1){

 // return;

 //}

R. G. Sparber January 28, 2017 Page 104 of 150

 lcd.setCursor(0,1);

 if(gonogoFlag){//if in go/no go mode, use alternate prompt so it does

not

 //hit Under, OK, Over outputs

 lcd.print(" ");//enough room to print "Under " which is 6 characters

 lcd.print((char)0b01111110); //this is an arrow ->>

 lcd.print(" & then ");

 lcd.print((char)0b01111111); //this is an arrow <<-

 }

 else //not using go/no go feature so can use more of bottom line for

prompt

 {

 lcd.print((char)0b01111110); //this is an arrow ->>

 lcd.print((char)0b01111110); //this is an arrow ->>

 lcd.print(" and then ");

R. G. Sparber January 28, 2017 Page 105 of 150

 lcd.print((char)0b01111111); //this is an arrow <<-

 lcd.print((char)0b01111111); //this is an arrow <<-

 lcd.print (" ");

 }

}

void startODmeasPrompt()//tell user how to measure an OD: <<-<<- and

then ->>->>

{

 lcd.setCursor(0,1);

 Serial.print("gonogoFlag =");

 Serial.print(gonogoFlag);

R. G. Sparber January 28, 2017 Page 106 of 150

 if(gonogoFlag){//if in go/no go mode, use alternate prompt so it does

not

 //hit Under, OK, Over outputs

 lcd.print(" ");//enough room to print "Under " which is 6 characters

 lcd.print((char)0b01111111); //this is an arrow <<-

 lcd.print(" & then ");

 lcd.print((char)0b01111110); //this is an arrow ->>

 }

 else //not using go/no go feature so can use more of bottom line for

prompt

 {

 lcd.print((char)0b01111111); //this is an arrow <<-

 lcd.print((char)0b01111111); //this is an arrow <<-

 lcd.print(" and then ");

 lcd.print((char)0b01111110); //this is an arrow ->>

 lcd.print((char)0b01111110); //this is an arrow ->>

R. G. Sparber January 28, 2017 Page 107 of 150

 lcd.print (" ");

 }

}

void interpolation() // using gage-blocks[] and actual_results[] arrays,

the measured value's accuracy is improved

// input and output are the variable oldResult

//output is rounded to the nearest 1/2 thou because input was rounded

that way

//calibration table is built by reading essentially perfect gage blocks to

resolution of +/- 0.25 thou

//because the 0.5 thou indicator can flicker if I'm right on the edge of x.0

or x.5.

//Each reading from the caliper is +/- 0.25 thou for the same reason

R. G. Sparber January 28, 2017 Page 108 of 150

//assuming repeatability better than resolution, maybe I can claim an

output from this interpolation

//of +/- 0.5 thou

{

 if (command == 1){

 return;

 }//used in loop to prevent interpolation running when trying to get to

calibration mode

 //Serial.println("in interpolation");

 for (i=0; i<10 && gage_blocks[i] != 10000;i++) //diagnostic

 {

 //Serial.print ("333 gage_blocks[");

 //Serial.print (i);

 //Serial.print ("]= ");

 //Serial.println (gage_blocks[i]);

R. G. Sparber January 28, 2017 Page 109 of 150

 //Serial.print ("actual_results[");

 //Serial.print (i);

 //Serial.print ("]= ");

 //Serial.println (actual_results[i]);

 }

 cd = false; //initialize flag to say data is not calibrated

 if (actual_results[0] == 10000 || oldResult < 0) //if first entry is empty,

silently return. User did not put any gage blocks in system.

 // if oldResult < 0, then can't calibrate so silently return

 {

 //Serial.print("actual_results[0]= ");

 //Serial.println(actual_results[0]);

 //Serial.println("array empty");

 return;

 }

R. G. Sparber January 28, 2017 Page 110 of 150

 //locate correct segment in actual_results[] array

 j=10; //preset j to 10 so I can tell if the search fails

 for (i=0; i<10 && actual_results[i] != 10000 && actual_results[i+1] !=

10000 ; i++) //qazp empty elements are filled with the number 10000

 //and signal end of data. If an element empty, mark result as not cal

 {

 if (oldResult >= actual_results[i] && oldResult < actual_results[i+1]) //

if oldResults is between entry i and i+1

 {

 //Serial.println("found correct segment");

 j=i; //record bottom end of correct segment

 break; //exit search for correct segment qazz

 }

 } //otherwise, check the next segment

R. G. Sparber January 28, 2017 Page 111 of 150

 if (j>=10) //if true, ran out of table

 {

 //Serial.println("segment not found");

 return; //so just silently return except with cd left as false

 }

 //do interpolation

 //but first do a divide by zero check

 actual = actual_results[j +1] - actual_results[j];

 if (actual==0.0)

 {

 lcd.clear();

 lcd.print("Run calibration.");

R. G. Sparber January 28, 2017 Page 112 of 150

 lcd.setCursor(0,1);

 lcd.print("Data damaged."); //if calibration data damaged, pass

oldResult right through

 //and warn user for 3 seconds

 delay(3000);

 return;

 }

 //do interpolation to improve accuracy of oldResult

 oldResult = gage_blocks[j] + ((gage_blocks[j+1] -

gage_blocks[j])*((oldResult-actual_results[j])/actual));

 roundToHalfThou(oldResult);//round result to the nearest half thou

qasz

 cd = true; //oldResult has been made more accurate due to calibrated

data. This flag will put a "*" in the

 //upper right hand corner of the LCD display

}

//end of interpolation()

R. G. Sparber January 28, 2017 Page 113 of 150

void exitCalibrationQ()//calibration is all done in inches so if units is in

mm, then it means user wants to exit calibration mode; change

command to 6 and return

{

 lcd.clear();

 lcd.print("Push inch/mm");

 lcd.setCursor(0,1);

 lcd.print("to exit.");

 setMilli_t0();

 milliNow();

 while(units == UNIT_THOU && milliDelta < 2000){

 fetchReading();

R. G. Sparber January 28, 2017 Page 114 of 150

 milliNow();//update milliDelta

 }

 if(units == UNIT_MM){

 lcd.clear();

 lcd.print("Exiting.");

 lcd.setCursor(0,1);

 lcd.print("Please wait.");

 command = 6;

 }

}

R. G. Sparber January 28, 2017 Page 115 of 150

void promptForBlock()//tell user to close jaws around block; they may

open the jaws first but ignore that movement. Only record local

minimum

{

 lcd.clear();

 lcd.print("Close jaws");

 lcd.setCursor(0,1);//go to bottom line

 lcd.print("on block.");

}

R. G. Sparber January 28, 2017 Page 116 of 150

void processBlock()//use oldResult to figure out the block size which

will be gageBlock

{

 //gage blocks must be zero in the thou place (example: 0.120" is ok but

0.121" is not). Round newResult

 //to nearest 10 thou and store in gage_blocks array at location

nextOpen

 actual = oldResult; //save value used to determine gage block

 qaz = (oldResult+5)/10; //oldResult is float and qaz is integer; by

adding 5 thou to oldResult and then

 //dividing by 10 we truncate via conversion to integer,

 qaz=qaz*10.; //then multiply by 10 to restore estimate to a value

rounded to the nearest 10 thou; I get the nominal gage block value

 gageBlock = qaz;//block measurement rounded to the nearest 10 thou

which gives nominal gage block value

}

R. G. Sparber January 28, 2017 Page 117 of 150

void displayBlock()//show user the block measured werrf

{

 lcd.clear();

 lcd.print("Block found:");

 lcd.setCursor(0,1);//move to bottom line

 lcd.print(gageBlock/1000,3);//print in inches with 3 places to right of

decimal point

 lcd.print(" inches");

 delay(3000);//show for 3 seconds and return

}

void acceptOrRejectBlock()//give user chance to reject block.User given

2 seconds to respond. If units pushed twice during those 2 seconds,

R. G. Sparber January 28, 2017 Page 118 of 150

//it means reject so set rejectBlock to true

{

 rejectBlock = false;//initialize flag

 lcd.clear();

 lcd.print("Keep this block?");

 lcd.setCursor(0,1);//move to bottom line

 lcd.print("Push twice = no.");

 setMilli_t0();//define t=0

 milliNow();//define first milliDelta

 while(milliDelta < 2000){

 milliNow();//get current time since t=0

 fetchReading();//read caliper

 if (units == UNIT_MM){

 rejectBlock = true;

 lcd.clear();

 lcd.print("Block removed.");

R. G. Sparber January 28, 2017 Page 119 of 150

 delay(2000); //this delay gives user time to see message plus will cas

an exit of while statement

 }

 }

 insureInches();//if caliper not set to inches, user asked to change it and

program waits until it is in inches

}

void insureInches(){//if caliper not set to inches, user asked to change it

and program waits until it is in inches

 if(units == UNIT_MM){

 delay(1000);//give user 1 second to push inch/mm second time

 if(units == UNIT_MM){

R. G. Sparber January 28, 2017 Page 120 of 150

 lcd.clear();

 lcd.print("push inch/mm");

 lcd.setCursor(0,1);

 lcd.print("again please.");

 }

 while(units == UNIT_MM){

 fetchReading();//read units unit user goes back to inches

 }//units are back to inches now

 }

}

void calibrationMode()

{

 //Serial.println("1");

R. G. Sparber January 28, 2017 Page 121 of 150

 /* calibration mode

 Enter calibration mode by having command = 1. We are then promted

for the first gage block which must be in increments of 10 thou.

 The program determines its nominal value by rounding the reading to

the nearest 10 thou.It then

 records the nominal value and the measured value in two arrays. These

arrays were initialized to

 "10000" in each element which is beyond the range of the caliper. This

tells the program

 where the data ends.

 After each calibration point is recorded, program prompts for a

 new gage block. When user is done, they press the inch/mm button

with jaws wider than 1/2".

 The program then sorts the updated tables in ascending order in

preparation for interpolation

 performed during the measurement mode. We then return the user to

the measurement mode.

 */

R. G. Sparber January 28, 2017 Page 122 of 150

 if (command !=1)// only if command equals 1 do we start calibration.

 {

 //Serial.println("2");

 return;

 }

 //command = 1 which means user wants to run calibration; they must

not change unit state unless they want to leave calibration

 lcd.clear(); //[a]

 lcd.print("Calibration Mode");

 delay(2000);

 gageBlock = -1; //if user wants to leave before gageblock measured,

gageBlock will have been initialized to -1 and don't use it

 fetchReading(); //read current inch/mm state which will be put in

oldUnits

 oldUnits = units;//NOT SURE THIS IS USED ANYMORE

R. G. Sparber January 28, 2017 Page 123 of 150

 if(units == UNIT_MM)//calibration must be done with gage blocks in

inches, not mm

 {

 lcd.clear();

 lcd.print("Please change");

 lcd.setCursor(0,1);

 lcd.print("to inches.");

 //delay(2000); //no reason to add wait since we are monitoring units

for the change

 while(units == UNIT_MM){

 fetchReading();

 }

 lcd.clear();

 lcd.print("Thank you.");

 delay(2000);

 }

 //Serial.println("3");

R. G. Sparber January 28, 2017 Page 124 of 150

Top:

 while (command == 1) //[b] stay in calibration mode until user signals

they want to exit. Then sort tables and exit function

 {

 exitCalibrationQ();//if user pushed inch/mm so units now equals

UNIT_MM, it means they want to exit. Change command to 6.

 if(command != 1){

 goto Top;

 }

 promptForBlock();//tell user to close jaws around block; they may

open the jaws first but ignore that movement. Only record local

minimum

 jitterCheck();//wait until jaws moved more than jitter

 recordBlock();//find block and result is in oldResult

 processBlock();//use oldResult to figure out the block size which will

be gageBlock

 displayBlock();//show user the block measured and wait 3 seconds

 //acceptOrRejectBlock();//give user chance to reject block.User given

2 seconds to respond. If units pushed twice during those 2 seconds,

 //it means reject so set rejectBlock to true.

R. G. Sparber January 28, 2017 Page 125 of 150

 if (rejectBlock == true){

 goto Top;

 }

 if (gageBlock < 0) //reject any negative gage blocks

 {

 lcd.clear(); //warn user that gageblock can't be negative

 lcd.print("No negative");

 lcd.setCursor(0,1);

 lcd.print("gage blocks.");

 delay(3000);

 goto Top;//reject gageBlock and ask for new one

 }

 //store gage block and caliper values if possible

 foundRoom=false; //[d] initialize flag to say no room found in the gage

block calibration array

R. G. Sparber January 28, 2017 Page 126 of 150

 for (i=0;i<10 && !foundRoom;i++) //search array to see if this gage

block was previously put in array until room has been found

 {

 if (gageBlock == gage_blocks[i])

 {

 nextOpen=i; //record location; logic will find first one but there

should never be more than 1

 foundRoom=true; //set flag to say we found room in the gage block

calibration array

 //Serial.println("f2.23 duplicate.");

 } //if nominal gage block value not found in array, search for next

open data location

 }

 if(!foundRoom) //if no room found due to duplicate entry search the

entire gage block array for an open space

 {

 // to get this far, there was no existing entry so find the first emplty

location

R. G. Sparber January 28, 2017 Page 127 of 150

 for (i=0;i<10 && !foundRoom ;i++) //find first empty location unless

no room found

 {

 if(gage_blocks[i] == 10000.0) //search for a value of 10000.0 which

flags an open location if not foundRoom yet

 {

 nextOpen=i; //when found, record the location in nextOpen and

break out of loop

 foundRoom=true; //set flag to say I found an empty location in the

gage block array

 }

 }

 if(!foundRoom) //if no room was found in the entire array give error

message

 {

 // if there are no empty location, print error message and exit

calibration mode

 lcd.clear();

 lcd.print (" Calibration");

R. G. Sparber January 28, 2017 Page 128 of 150

 lcd.setCursor(0,1);

 lcd.print (" array full!");

 delay(5000);

 command = 6;//change command from calibrationMode (1) to no

command active (6)

 }

 } // else found empty location to store newest gage block data or hit

full array and set command to 6 (none)

 if(foundRoom) //if foundRoom store value in array

 {

 //store_value:

 //now have a place to store recently measured gage block: nextOpen

 gage_blocks[nextOpen] = gageBlock;

 actual_results[nextOpen] = actual;

 }

R. G. Sparber January 28, 2017 Page 129 of 150

 }//[e]get next gage block measurement if command = 1

(calibrationMode

 //Serial.println("12");

 //incertion sort in ascending order when user wants to leave

calibration mode

Sort:

 if(command ==6) //[f] if command set to none, do sort table and then

return from calibrationMode

 {

 for (j=0; i<10; j++) //sort entire table even though some entries will

equal 10000 which means they are empty

 {

 k = j; //start by assuming that element j is the smallest. j is the start of

the unsorted part of the array

 for (i=k+1;i<10;i++)//look through entire array above entry k and

find smallest entry;

 {

R. G. Sparber January 28, 2017 Page 130 of 150

 if

 (actual_results[k] > actual_results[i])

 {

 k=i; //entry k is less than entry i

 }

 }

 //k points to smallest entry found between k+1 and end of array

 keyActual = actual_results[k]; //save smallest entry; shift all lower

entries up one

 //starting at entry k and working down to entry j

 keyBlock = gage_blocks[k]; //shadow moves within the actual_results

array in gage_blocks array

 for (i=k; i>j; i--) //counting down from k to j+1 and shift elements up

one

 {

 actual_results[i] = actual_results[i-1]; //last element to move up is i-

1 when i = j+1 so

R. G. Sparber January 28, 2017 Page 131 of 150

 //we move element j up one so elemement j and j+1 are the same

right now

 gage_blocks[i] = gage_blocks[i-1]; //last element to move up is i-1

when i = j+1 so

 //we move element j up one so elemement j and j+1 are the same

right now

 }

 actual_results[j] = keyActual; //put keyActual into location j.

Elements 0 through j+1 now in ascending order

 gage_blocks[j] = keyBlock; //put keyBlock into location j. Elements 0

through j+1 now in ascending order

 }//advance to next entry during sort routine

 } //end of sorting routine

 //give user final review of table

 //Serial.println("99");

R. G. Sparber January 28, 2017 Page 132 of 150

 lcd.clear();

 lcd.print("Review of values");

 lcd.setCursor(0,1);//move to bottom line

 lcd.print("inch/mm = reject");

 delay(2000);

 changeMade = false;//init flag

 fetchReading();//read current state of units

 oldUnits = units;

 for (i = 0;gage_blocks[i] != 10000;i++){

 //Serial.print("gage_blocks[");

 //Serial.print(i);

 //Serial.println("]= ");

 //Serial.println(gage_blocks[i]);

 }

R. G. Sparber January 28, 2017 Page 133 of 150

 for (ii = 0;gage_blocks[ii] != 10000;ii++)

 {

 //Serial.print("56 ii = ");//q12

 //Serial.println(ii);

 setMilli_t0();//set t=0

 milliNow();//initialize milliDelta

 lcd.clear();

 lcd.print("Block & actual: ");

 //lcd.print(ii);

 //lcd.print(":");

 lcd.setCursor(0,1);//move to bottom line

R. G. Sparber January 28, 2017 Page 134 of 150

 lcd.print(gage_blocks[ii]/1000,3);//display in inches out to thou

 lcd.print("\" ");

 lcd.print(actual_results[ii]/1000,4);//display in inches out to thou

 lcd.print("\"");

 //lcd.print(" inches");

 while (milliDelta < 3000){

 //Serial.print("56 milliDelta = ");//q12

 //Serial.println(milliDelta);

 fetchReading();//wait for 2 seconds to pass or user pushes inch/mm

button

 //Serial.print("899 units = ");

 //Serial.println(units);

R. G. Sparber January 28, 2017 Page 135 of 150

 //Serial.print("899 oldUnits = ");

 //Serial.println(oldUnits);

 if(oldUnits != units){ // if user pushes inch/mm button

 changeMade = true;//set flag

 gage_blocks[ii] = 10000;//clear the entry

 lcd.clear();

 lcd.print("Entry removed.");

 lcd.setCursor(0,1);

 lcd.print("Push inch/mm.");

 while (oldUnits != units){//this gives me user timed display plus

puts units back to oldUnits

 fetchReading();

 }

 }

R. G. Sparber January 28, 2017 Page 136 of 150

 milliNow();//get updated milliDelta time

 }//loop to evaluate one entry

 }//loop to inspect table

 if(changeMade){//if a change was made, resort table and review again

 goto Sort;

 }//otherwise, we are done

 //Serial.println("13");

 lcd.clear();

 lcd.print ("End Calibration.");

 lcd.setCursor(0,1);

 lcd.print((char)0b01111110); //this is ->>

 lcd.print("Unlock7");

R. G. Sparber January 28, 2017 Page 137 of 150

 //Serial.println(" Unlock7");

 delay(1000);

 //Serial.println("14");

 command = 6;//set command flag to say we are not in calibrationMode

anymore

} //end of calibrationMode()

void factor()//input qaz (int) and output edc (int) which is the largest

multiple of 2 that fits evenly

{

 if (qaz == 0){

 edc = 1;//if qaz is zero, dividing it by 1 is harmless

R. G. Sparber January 28, 2017 Page 138 of 150

 return;

 }//can't factor zero

 j = 1;

 do {

 j = j*2;

 rfv = float(qaz)/(j); //rfv is float

 edc = qaz/(j);//edc is integer; they will be equal as long as both divide

evenly by 2

 }

 while (rfv == float(edc));//insure that both variables are float

 //if not equal on first pass, then most common multiple of 2 should be

1, not 2

 edc = j/2;//edc equals largest multiple of 2 that goes evenly into qaz;

divide by 2 because j is doubled before result tested

 //when test fails, we need to crank j back to previous value

}

R. G. Sparber January 28, 2017 Page 139 of 150

void gonogo()//Go/No-Go test

//If the function is inactive, entering it will enable go/no go. If the

function is active, entering will disable it.

// When disabled and entered:

// 1. user asked if test is on OD or ID; enable only OD or ID

measurements

// 2. prompted for lower limit and store as lowerLimit

// 3. prompt for upper limit and store as upperLimit

// 4. gonogoFlag is the flag that tells displayAnswer to print "Under",

"OK", or "Over" in bottom left corner of display.

// Top and bottom right do not change

R. G. Sparber January 28, 2017 Page 140 of 150

// When enabled and entered:

// 1. user told function will now be disabled.

// 2.restore original value of odID

{

 lcd.clear();

 lcd.print("Go/No-Go");

 lcd.setCursor(0,1);

 if(gonogoFlag){//toggle flag to opposite state

 gonogoFlag = false;//if we were in go/no go, then user wants to exit

 lcd.print("will be off.");

 odID = oldodID;//restore old odID value

 delay(2000);

 lcd.clear();

 return;

 }

R. G. Sparber January 28, 2017 Page 141 of 150

 //else, we were not in go/no go, so user want to enter

 gonogoFlag = true;

 lcd.print("will be on.");

 oldodID = odID;//save current odID value

 delay(2000);

getLimits:

 lcd.clear();

 lcd.print("Test ID?"); //odID = 1 is OD only; = 2 means ID only

 lcd.setCursor(0,1);

 lcd.print(" yes = inch/mm");

 setMilli_t0();

 milliNow();//initialize milliDelta

 fetchReading();

 gng_oldUnits = units;

 while (milliDelta < 3000){//wait for 2 seconds to pass or user pushes

inch/mm button to signify they want to measure ID

R. G. Sparber January 28, 2017 Page 142 of 150

 fetchReading();

 if(gng_oldUnits != units){ // if user pushes inch/mm button

 odID = onlyID;//set flag for ID

 lcd.clear();

 lcd.print("ID selected.");

 delay(3000);

 }

 milliNow();//get updated milliDelta time

 }

 if (gng_oldUnits == units){//if user did not push inch/mm within 2

seconds, it means they want to measure OD

 odID = onlyOD;//set flag for OD

 lcd.clear();

 lcd.print("OD selected.");

 delay(2000);

 }

R. G. Sparber January 28, 2017 Page 143 of 150

 insureInches();//if caliper not set to inches, user asked to change it and

program waits until it is in inches

 //ready to measure limits; do lower limit first

 lcd.clear();

 lcd.print("Get lower limit:");

 odIDread();//read either OD or ID and return with oldResult

 lowerLimit = oldResult;

 lcd.clear();//display measured lower limit

 lcd.print("Lower limit:");

 lcd.setCursor(0,1);

 lcd.print(lowerLimit/1000,4);

 lcd.print(" inches");

 delay(2000);

 //ready to measure upper limit

 lcd.clear();

R. G. Sparber January 28, 2017 Page 144 of 150

 lcd.print("Get upper limit:");

 odIDread();//read either OD or ID and return with oldResult

 upperLimit = oldResult;

 lcd.clear();

 lcd.print("Upper limit:");

 lcd.setCursor(0,1);

 lcd.print(upperLimit/1000,4);//display upper limit

 lcd.print(" inches");

 delay(3000);

 if (upperLimit < lowerLimit){

 tempLimit = upperLimit;//if limits out of order, swap them silently

 upperLimit = lowerLimit;

 lowerLimit = tempLimit;

 lcd.clear();

 lcd.print("Limits were");

 lcd.setCursor(0,1);

R. G. Sparber January 28, 2017 Page 145 of 150

 lcd.print("out of order.");

 delay(2000);

 }

 lcd.clear();

 lcd.print("Review limits:");

 lcd.setCursor(0,1);

 lcd.print(lowerLimit/1000,4);

 lcd.print(" ");

 lcd.print(upperLimit/1000,4);

 delay(3000);

 qaz = units;//save present state of units

 lcd.clear();

 lcd.print("If not OK, push");

R. G. Sparber January 28, 2017 Page 146 of 150

 lcd.setCursor(0,1);

 lcd.print("inch/mm now.");

 setMilli_t0();

 milliNow();//initialize milliDelta

 while(units == qaz && milliDelta < 2000){

 fetchReading();

 milliNow();//update milliDelta

 }

 if(units == qaz){//if we left the above look because we timed out, then

just exit

 lcd.clear();

 lcd.print("Go/No-Go ready.");

 command = 6;

 }

 else

R. G. Sparber January 28, 2017 Page 147 of 150

 {

 goto getLimits;

 }

}//end of gonogo()

void odIDread()//this functon contains most of the calls from loop() but

used by go/no go function

{

 initCommandPortal();//sets command to 6 and sets oldUnits to current

value. Is used by next function

 if(odID == onlyOD){//then it is OD

 displayRadiusAndWait();//caliper jaws have to close by Limit before

we start to look for nextlocal minimum; also look for command to run.

R. G. Sparber January 28, 2017 Page 148 of 150

 //after command runs, it will return here.

 startODmeasPrompt(); //ID measurement persists on display until

caliper jaws start to close. When they stop closing

 //and start opening, we lock in OD measurement and replace ID with

OD

 noReadyPrompt = false;//tells next function to output "to meas."

prompt

 initCommandPortal();//sets command to 6 and sets oldUnits to

current value. Is used by next function

 localMinRead(); //prompt user, monitors caliper for local minimum

and detect a possible push of inch/mm which means

 //command will be executed. When done, we will return to this point

in the loop; output is oldResul

 interpolation(); //improve accuracy of caliper reading using gage

blocks; input and output are oldResult; pass through if data not present

 }

 initCommandPortal();//sets command to 6 and sets oldUnits to current

value. Is used by next function

 if(odID == onlyID){//then it is ID

R. G. Sparber January 28, 2017 Page 149 of 150

 displayRadiusAndWait();//caliper jaws have to open by Limit before

we start to look for local maximum; also looking for command to run.

 //after command runs, it will return here.

 startIDmeasPrompt(); //OD measurement persists on display until

caliper jaws start to open. When they stop opening

 //and start closing, we lock in ID measurement and replace OD with ID

 noReadyPrompt = false;//tells next function to output "to meas."

prompt

 initCommandPortal();//sets command to 6 and sets oldUnits to

current value. Is used by next function

 localMaxRead(); //monitor caliper for local maximum; then signal we

are ready for new local minimum; also looking for command to run.

 //after command runs, it will return here.

 interpolation(); //improve accuracy of caliper reading using gage

blocks; input and output are oldResult; pass through if data not present

 //displayAnswer(); //display best reading; input is oldResult and no

output to program

 //hold displayed result until user signals for a new reading or signals

to enter calibration mode

R. G. Sparber January 28, 2017 Page 150 of 150

 //when user has signaled that they are done with last reading. See if

they want to enter calibration mode or take another reading

 }

}

Acknowledgments

I welcome your comments and questions.

If you wish to be contacted each time I publish an article, email me with just

"Article Alias" in the subject line.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

