
R. G. Sparber November 26, 2018 Page 1 of 10

Arduino Byte Juggling, Version 1.3

By R. G. Sparber

Protected by Creative Commons.1

I call this one of my “lightning rod” articles. I state what I have learned and then

throw it out there. Invariably, one or more people with a lot more knowledge come

forward with an approach far better than I found. That is great and I then update

the article to reflect the new found insights along with the proper credits. All

benefit.

So far, two experts have stepped forward to expand on this topic. Thanks to Dave

Kellogg and John Dammeyer for their help.

After writing this article and before publishing it, I stumbled into

https://playground.arduino.cc/Code/EEPROMReadWriteLong

which explains how to use bit shifting to accomplish the same tasks. They are

dealing with the internal EEPROM but the restriction is the same: reading and

writing single bytes. Of special interest to me is how they bit AND with varying

lengths of all ones to define the size of the resulting variable.

Using the key words “long” and “EEPROM” you will find others discussing this

issue. I’m sure there is one that uses the technique presented here but I didn’t find

it.

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

https://playground.arduino.cc/Code/EEPROMReadWriteLong

R. G. Sparber November 26, 2018 Page 2 of 10

A Few Data Formats
There are many data formats available for programming Arduinos. We can define a

single byte, two bytes, or four bytes2.

English Arduino bytes used range of numbers it can hold

Byte byte 1 byte 0 to 255

Integer int 2 bytes -32,768 to 32,767

Long long 4 bytes -2,147,483,648 to 2,147,483,647

Things get a little sticky when we want to store variables in an external EEPROM.

I am using the 24LC1025 which can hold 128KB of data. It expects to deal with

bytes or contiguous blocks of bytes. I chose to only use the single byte option.

A Byte
To write/read a single byte to/from the EEPROM, I used the sample code available

on SparkFun3. Simple enough when your variables are all single bytes.

WriteEEPROM(an address, n);

n = ReadEEPROM(an address);

Where n is a byte.

2 There are also unsigned integers and unsigned longs but they use the same number of bytes as integers and longs.

Floats use four bytes.
3See https://learn.sparkfun.com/tutorials/reading-and-writing-serial-eeproms

https://learn.sparkfun.com/tutorials/reading-and-writing-serial-eeproms

R. G. Sparber November 26, 2018 Page 3 of 10

An Integer
When needing to store an integer, we must deal with two bytes. To do a write, we

can employ the built-in functions lowByte(m) and highByte(m).

WriteEEPROM(an address, lowByte(m));

WriteEEPROM(an address + 1, highByte(m));

Where m is an integer (2 bytes).

This code will take the least significant byte (LSB) of the two byte variable called

m and save it to “an address”. The next line will save the most significant byte

(MSB) of this variable to the next higher address. So it wasn’t that hard to

disassemble a two byte number and store it as separate bytes.

To do a read is a little trickier. There is no reverse of lowByte/highByte. We can

get the bytes back but need to assemble them into an integer.

Byte0 = ReadEEPROM(an address);

Byte1 = ReadEEPROM(an address + 1);

Say m = 12345 and has been defined as an integer. In hexadecimal (hex) it would

be 0x3039. This means that Byte1 holds 0x30 and Byte0 holds 0x39. If “an

address” is 42, we will see 0x39 in address 42 and 0x30 in address 43.

To reassemble m I must fetch these bytes and put them in the correct order:

m = 256*int(Byte1) + int(Byte0); //first convert each byte to integer

Multiplying by 256 moves the LSB into the MSB position.

Going back to our example, given

Byte 1 = 0x30 which equals decimal 48

Byte 0 = 0x39 which equals decimal 57

m = (256 * Byte1) + (Byte0)

m = (256 * 48) + 57

m = 12345 which is what we put into memory in the first place.

R. G. Sparber November 26, 2018 Page 4 of 10

A Long
Now that we know how to read and write integers to EEPROM, we can consider

Longs which are four bytes.

Say p is a long.

To do a write, we can employ the built-in functions lowByte(p) and extract the

LSB:

WriteEEPROM(an address, lowByte(p));

In fact, you can even use highByte(p) to extract the byte just above the LSB

WriteEEPROM(an address + 1, highByte(p));

But then what? I have two more bytes to write and there isn’t a higherByte() and

highestByte() functions.

The technique I found is to use a combination of lowByte() calls and bit shifts.

WriteEEPROM(an address, lowByte(p));

WriteEEPROM(an address + 1, lowByte(p>>8));

WriteEEPROM(an address + 2, lowByte(p>>16));

WriteEEPROM(an address +3, lowByte(p>>24));

I’m taking the long, p, and shifting it right by the specified number of bit positions.

Then I chop off the low byte. The most significant bit is replicated4 as I shift right

but this is harmless because I never see it.

I could have alternately written:

WriteEEPROM(an address, (p & 0xFF));

WriteEEPROM(an address + 1, (p>>8) & 0xFF);

WriteEEPROM(an address + 2, (p>>16) & 0xFF);

WriteEEPROM(an address +3, (p>>24) & 0xFF);

The bit ANDing with 0xFF5 zeros out the upper bytes and leaves the LSB.

4 This is called sign extension.
5 0xFF is 0x00FF which is 0000 0000 1111 1111 in binary. Anding with this number zeros out the top byte.

R. G. Sparber November 26, 2018 Page 5 of 10

Recall that to read an integer we used

int m; //define n as an integer

Byte0 = ReadEEPROM(an address); //get the LSB

Byte1 = ReadEEPROM(an address + 1);//get the MSB

m = 256*int(Byte1) + int(Byte0);//assembly the integer

You might think that reading a long should be an extension of what worked for

integers:

long p; //define p as a long

Byte0 = ReadEEPROM(an address); //get the LSB

Byte1 = ReadEEPROM(an address + 1);//get the second byte

Byte2 = ReadEEPROM(an address + 2);//get the third byte

Byte3 = ReadEEPROM(an address + 3);//get the MSB

p = 256*256*256*long(Byte3) + 256*256*long(Byte2) + 256*long(Byte1) +

long(Byte0);//assemble the long

Nope. Don’t work.

The reason is subtle. By default, arithmetic is done using what is called the

“C Operator Precedence Table”. It says that we do multiplications first and start at

the left end of each group of multiplication. A second set of rules called the “Usual

Arithmetic Conversions” tells us how the compiler deals with different data types.

p = 256*256*256*long(Byte3) + 256*256*long(Byte2) + 256*long(Byte1) +

long(Byte0);//assemble the long

The compiler looks at the first two numbers in the first multiplication:

256*256*256*long(Byte3)

Since they are not marked, it is assumed they are both integers. But the result is

larger than what an integer can hold so the result is 0. That zeros out the first term.

R. G. Sparber November 26, 2018 Page 6 of 10

Next, we have

256*256*long(Byte2)

Again we multiply the integer 256 by the integer 256 and the result is too large to

be held in an integer. We get 0 instead. So this zeros out the second term.

Then we have

256*long(Byte1)

The compiler sees that one of these values is a long so coverts 256 to a long and

the result is a long. Plenty of room for the result.

And the last term. long(Byte0), is just a long so is fine.

The solution is to tell the compiler you need to do all of the arithmetic using longs.

This is done by defining the first constant in each of the two large products as a

long. For example,

256L*256*256*long(Byte3)

When the compiler sees 256L*256, the “Usual Arithmetic Conversions” rules say

to change the second number to a long and the result is a long. Then we have the

product of the first two numbers stored as a long times the third 256. Since we are

multiplying by a long, the rule is to convert 256 into a long before multiplying.

Then when we multiply the resulting constant, which is a long, by long(Byte3), the

result is a long.

This same logic applies to the next term

256L*256*long(Byte3)

Since each of the multiplication results is a long, the sum must be a long too6. The

result is assigned to p which was previously defined as a long.

We end up with

p = 256L*256*256*long(Byte3) + 256L*256*long(Byte2) + 256*long(Byte1) +

long(Byte0);

6 As per the Usual Arithmetic Conversions document, as long as one of the two numbers being added is a long, the

other number will be converted to a long and the result will be a long.

R. G. Sparber November 26, 2018 Page 7 of 10

More Than One Variable Occupying the Same Space
John Dammeyer told me about the union7. This approach enables me write a long

and turn around and read each of the bytes separately. Conversely, it lets me write

each of the bytes separately and then read a long made up of those bytes.

Say I have

unsigned long LongPort;

This defines 4 bytes to be accessed when the program wants to read or write the

variable LongPort.

I can also have

 byte BytePort[4];

This defines 4 bytes to be accessed individually as the elements of an array. So if I

wrote

unsigned long LongPort;

byte BytePort[4];

data I assigned to LongPort would have nothing to do with data assigned to the

BytePort[] array.

However, I can get LongPort and BytePort[] to occupy the same memory if I write

union{

 unsigned long LongPort;

 byte BytePort[4];

} TwoWay;

union tells the compiler that we want to assign different variables to the same

memory space. After the { we have a list of the variables that point to the same

place. In this example, I have a long which is 4 bytes and my array is also 4 bytes

7 See http://www.cplusplus.com/doc/tutorial/other_data_types/ For a full explanation.

http://www.cplusplus.com/doc/tutorial/other_data_types/

R. G. Sparber November 26, 2018 Page 8 of 10

so the sizes match. In general, the amount of memory set aside will equal the size

of the largest variable. So if I had

 unsigned long LongPort;

byte BytePort;

BytePort would point to the LSB of the LongPort variable.

After } we have the name of the objects, TwoWay. This name will precede each

variable and have a “.” after it.

For example, I can populate my BytePort array with

 TwoWay.BytePort[0] = 0x00; //LSB

TwoWay.BytePort[1] = 0x01;

TwoWay.BytePort[2] = 0x02;

TwoWay.BytePort[3] = 0x03; //MSB

Then I can access LongPort by calling out TwoWay. LongPort. It will contain

0x03020100.

Since the variables LongPort and BytePort[4] were defined within the union{} they

are local variable. As you can see above, we must have the object’s name,

TwoWay with a “.” in front of each variable to use it globally. This also means that

I can have another union{} with the same variable names but with a different

object name and there won’t be a conflict.

R. G. Sparber November 26, 2018 Page 9 of 10

I can also go from writing a long and reading its bytes. For example, say I write

TwoWay.LongPort = 2881249614; //in hex it is 0xABBC614E

and then access each of the bytes that makes it up:

Serial.println(TwoWay.BytePort[3]); //0xAB

Serial.println(TwoWay.BytePort[2]); //0xBC

Serial.println(TwoWay.BytePort[1]);// 0x61

Serial.println(TwoWay.BytePort[0]); // 0x4E

This will print out the decimal equivalents of 0xAB, 0xBC, 0x61, and 0x4E.

171

188

97

78

As a final check, let’s put TwoWay.LongPort back together:

171*(256*256*256) + 188*(256*256) + 97*(256) + 78 = 2881249614

A word of warning on unions. They do not work the same way across all types of

computing environments8. As long as you only use them in your Arduino

programming, all should be fine.

8 See https://en.wikipedia.org/wiki/Endianness for how the order of the bytes can vary.

https://en.wikipedia.org/wiki/Endianness

R. G. Sparber November 26, 2018 Page 10 of 10

Acknowledgments
Thanks to Dave Kellogg for pointing me to the “C Operator Precedence Table” and

the “Usual Arithmetic Conversions” set of rules.

Thanks to John Dammeyer for sharing the unique method of performing this task.

I welcome your comments and questions.

If you wish to be contacted each time I publish an article, email me with just

"Article Alias" in the subject line.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

mailto:Rgsparber.ha@gmail.com

