
R. G. Sparber June 27, 2020 Page 1 of 127 

Irrigation Flow Monitor and Control 
System, Version 1.7 

By R. G. Sparber 
Protected by Creative Commons.1 

Conclusion 
This package of hardware and software is able to stop 

water wasted due to irrigation leaks. Within one minute, it 

will detect and shut down any zone with a flow rate 

greater than 30% above normal. Besides sounding an 

audible alarm, it sends an email to the user2. 

 
I built this system for under $150. 

Approximately $80 of this was for 

commonly available  parts. The 

challenge is to find an accurate flow 

meter at a reasonable cost. I used a 

modified second hand Badger Model 25 
flow meter. This is fine for a hobbyist 

but not as part of a product. 

 

 

My Goal 
I want someone or some company to pick up this design and turn it into a 

product. Developing the hardware and software is 10% of the effort. Product 

development, packaging, marketing, distribution, and product support make up 

 
1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this 

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, 
Mountain View, CA 94042, USA. 
2 Contact me for details. It uses IFTTT and an esp82666 board. Additional cost is under $10. 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj96IjfmsHYAhXoiFQKHQ-JA9gQjRwIBw&url=http://www.allianceforwaterefficiency.org/Irrigation_System_Maintenance_Introduction.aspx&psig=AOvVaw2-HItGKjtOT5c2IbNC0xH3&ust=1515254919195545


R. G. Sparber June 27, 2020 Page 2 of 127 

the other 90%. In exchange for this effort, they are free to keep all profits. I just 

want to see a significant reduction in wasted water. 

  



R. G. Sparber June 27, 2020 Page 3 of 127 

Background 
I own a very smart Irrigation Controller from RainBird. It is aware of the weather 

and adjust the run time of each of my 6 zones accordingly.  

 

However, this controller is missing an important 

feature: 
   

the ability to monitor and act on flow rates. 

 

If a valve sticks closed or open it can't tell. If a pipe 

bursts, it can't tell. If a single "spaghetti line" blows its 

emitter, can't tell. Worse yet, I can't quickly shut off the water. 

 
 

All of that changed with my Flow Monitor and 

Control (FMC) installed. 

 

 

 
 

 

 

See https://www.youtube.com/watch?v=fuf6UD6G-A8&t=94s and 

https://www.youtube.com/watch?v=oRK1sAZ7rfI&t=73s for videos of the system 

in action. 
 

Up until now, I have compensated for the lack of automatic flow control by 

manually recording my water usage on my city water meter. Since most of my 

usage is due to irrigation, this does at least tells me something is wrong. I must 

then sequence through all 6 zones and inspect the area of the property until I find 

the one with the problem.  
 

In one case, I had a major leak that left no water on the surface. My monthly bill 

told me something was wrong when it indicated 20,000 gallons of unusual 

consumption. That $300 bill was a big motivator for finding an automatic method 

of dealing with flow problems. 

 
  

https://www.youtube.com/watch?v=fuf6UD6G-A8&t=94s
https://www.youtube.com/watch?v=oRK1sAZ7rfI&t=73s


R. G. Sparber June 27, 2020 Page 4 of 127 

RainBird does sell a flow monitoring system but it is targeted for the commercial 

market and is priced accordingly.  
 

This article presents the design of my system including system block diagrams, 

schematics, flow charts, and software. It does not present the numerous dead ends 

and re-writes needed to get to what was finally built. 

 

I have included sufficient detail so someone with some hardware background could 
build the system. Minimal software knowledge is needed since I have supplied my 

code. If requested, I can supply the binary file. 

 

 

 

  



R. G. Sparber June 27, 2020 Page 5 of 127 

User's Manual 
Under normal conditions, the user does nothing. If the 

beeper sounds, the screen will tell the user which zone 

has a problem and what is wrong.  

 

If the Flow Monitor and Control was able to stop the 
flow of a faulted zone, the user should inspect the zone, 

correct the fault, and then clear the alarm.  

 

If the flow cannot be stopped, the user should turn off 

the main water supply. The problem will be between the 

water meter's output and  the valve's output. A broken 
pipe will be obvious. If a valve is unable to shut down 

you will see water flowing in the zone when the 

controller says it is off. 

 

 

 

System Normal 
When The Flow Monitor and Control is first 

powered up, it records the average water use for 

each zone. Here you see Zone 1 is active and the 

flow is 4.54 Gallons Per Minute (GPM). These 

measurements are saved as the first reference 

flow3 when Zone 1 is turned off by the Irrigation Controller. 
 

When a give zone is run again, its flow rate is 

compared to the reference. In this case, the 

current flow matches the flow the last time this 

zone ran. 

 
When no zones are on, the flow is compared to a 

limit4 of 0.06 GPM. Flow less than 0.06 GPM is 

considered acceptable. 

 

 
3 It is therefore essential that each zone is initially in proper working order. See page 9 for how to audit each zone. 
4 All readings are ± 0.03 GPM so this is the smallest limit we can have and not get false alarms. 



R. G. Sparber June 27, 2020 Page 6 of 127 

 

Fault Situations 
When no zones are on and the flow exceeds the 

limit of 0.06 GPM, we get an Overflow condition 

and a Major Alarm is sounded both day and night. 

It will sound for 0.1 seconds and be quiet for 0.1 

seconds. The number in the lower right hand corner 
is the current flow. It is possible to see "Can't stop idle flow." with a current flow 

of 0. This means it was greater than 0.06 GPM but is now zero. 

 

If the new flow is more than 30% higher than the 

reference, we get an Overflow condition. The 

system responds by turning off the valve and 
taking another flow measurement.  

 

If the flow is stopped, the screen indicates the 

problem. If it is daytime, the Flow Monitor and 

Control sounds a Minor Alarm which is 0.3 

seconds on and 2 seconds off. The flow that 
triggered the alarm is in the lower right corner. 

 

In this case, other zones can run and they will be monitored. If the flow can't be 

stopped, a Major Alarm will sound. Any time an Overflowed zone with Minor 

Alarm runs, its flow will be stopped. 
 

If the Flow Monitor and Control was unable to 

stop the flow5, the screen tells the story and a 

Major Alarm is sounded. The current flow is in 

the lower right corner. 

 
In this case, the Irrigation Controller can run other zones but they will be blocked 

as the Flow Monitor and Control continues to try and stop the leak. I have seen this 

fault when a valve was stuck open. 

 

  

 
5 6.80 GPM is 9,800 gallons per day! 



R. G. Sparber June 27, 2020 Page 7 of 127 

If the flow is more than 30% lower than the 

threshold, we get an Underflow condition. The 
second line shows the current flow and normal 

flow (ref). If during the day, a Minor Alarm is 

sounded. 

 

If the underflowed zone is not active, the system 

will monitor and control the other zones while 
displaying the error message for the faulted zone. 

 

Controlling Alarms 
 

 

 

 
 

 

By pushing the "clear alarms" button, all alarms 

will be cleared. If the problem is still present, the 

alarm will come back after 70 seconds. 

 
 

 

 

By pushing the PEST audible alarms button, any 

audible alarm will be silenced. It is a pest so this 

shuts it up. Alarms will return if the problem has not been resolved and cleared in 
time. For a Major alarm, expect it to sound again in 15 minutes. Minor alarms will 

sound again after 24 hours. Fault information will remain on the screen. 

 

  



R. G. Sparber June 27, 2020 Page 8 of 127 

Maintenance Function 
If the clear alarms button is held down before 

power up6 and released after power up, all 

historical data will be erased. The system will then 

collect new data as the zones turn on and off. 

 
If the PEST button is held down before power up 

and released after power up, you will see the current 

instantaneous7 flow rate. Before any flow is 

detected, you get this screen. Press Clear Alarm at 

any time to return to this screen. 
 

Once a non-zero flow rate is measured, the display 

will update every second. If the flow returns to 0, 

the last non-zero flow rate will remain on the 

screen. Press the PEST button to return to normal 

flow monitoring behavior. 

 

Status Indicators 
On most screens you will see one or two letters and one or 
two numbers. This is the status indicator. It is a sanity 

check to be sure all is working. The first letter can be N 

for nighttime with no audible alarms PESTed. If n, it is nighttime and a PEST is 

active. A D means daytime with no audible alarms PESTed. A d is daytime and 

PEST is active.  

 

The next character will be a T when we are waiting for the flow to build up and 

stabilize. [ means the flow meter has not indicated a unit of water8 has passed. A 

] means the flow meter just saw a unit of water pass. The result is that you see [ 

with the right side flickering into a rectangle when there is flow. The higher the 

flow rate, the closer you get to a constant rectangle.  

 

 
6 This involves unplugging the power supply from the wall. 
7 Normally, flow is measured over one minute intervals so small variations are averaged out. This flow measurement 
is instant. That is good for seeing what the flow is doing every second. 
8 One unit of water is 3.6 ounces or 0.028 gallons. 



R. G. Sparber June 27, 2020 Page 9 of 127 

The two numbers are a countdown until a new flow measurement is 

complete. If a zone just turned on, the count will go from 70 seconds 

down to 60 and the T will precede the count. At 60 you will see [and the count 

will decrement until it reaches 0. Then the flow information will update. 

 

If the user chooses to manually operate more than 

one zone at the same time, the flow is not 

monitored.  
 

There is an electromechanical relay inside the 

Flow Monitor And Control that can fail. As long as 

it is stuck in the open position, this message will 

display and a Minor alarm will sound. However, if 

the problem goes away, we will return to normal operation. 
 

It is also possible that software errors will occur. This might be from real software 

bugs or could be due to electrical noise crashing the Flow Monitor And Control. If 

you get a software error message, please write it down. Then unplug power for 10 

seconds and plug it back in. See if the problem returns. Any correlations with 

zones turning on or off would be helpful in debugging the problem.  



R. G. Sparber June 27, 2020 Page 10 of 127 

Contents 

Conclusion ............................................................................................................. 1 

My Goal................................................................................................................. 1 

Background............................................................................................................ 3 

User's Manual ........................................................................................................ 5 

System Normal .................................................................................................. 5 

Fault Situations .................................................................................................. 6 

Controlling Alarms ............................................................................................ 7 

Maintenance Function ........................................................................................ 8 

Status Indicators ................................................................................................. 8 

The Original Configuration .................................................................................. 12 

Auditing A Zone .................................................................................................. 14 

Fault Scenarios..................................................................................................... 15 

Blocking the Faulted Flow ................................................................................... 17 

Detecting A Fault ................................................................................................. 18 

Logic Overview ................................................................................................... 19 

System Overview ................................................................................................. 20 

Details of the Existing System ............................................................................. 21 

Introduction to the New Functionality.................................................................. 22 

The Flow Measuring Device ............................................................................ 22 

The Flow Monitor and Control......................................................................... 24 

Presenting the Design....................................................................................... 24 

Level One System Block Diagram ....................................................................... 25 

Level Two System Block Diagram ...................................................................... 26 

Flow Monitor and Control Inputs ..................................................................... 27 

Flow Monitor and Control Outputs .................................................................. 28 

Level Three System Block Diagram .................................................................... 29 

Built In Testing Features ...................................................................................... 31 

Level Four System Block Diagram ...................................................................... 32 

Flow Sensor Mechanism .................................................................................. 32 

Flow Monitor and Control................................................................................ 35 



R. G. Sparber June 27, 2020 Page 11 of 127 

Signal Converter Subsystem ............................................................................ 36 

All Zones Off ................................................................................................... 37 

Pushbuttons ...................................................................................................... 39 

Light Sensor ..................................................................................................... 40 

Flow Interface .................................................................................................. 41 

Power ............................................................................................................... 44 

The Arduino ..................................................................................................... 44 

The Liquid Crystal Display .............................................................................. 50 

The Full Schematic .......................................................................................... 51 

Bill Of Materials .............................................................................................. 54 

Software............................................................................................................... 55 

Overall Software Strategy ................................................................................ 56 

Level 1 Flowchart ............................................................................................ 58 

Major Subroutines ............................................................................................ 64 

Software Structure ........................................................................................... 66 

Acknowledgements .............................................................................................. 68 

Appendix 1: Zero Crossing Pulse Width .............................................................. 69 

Appendix 2: EEPROM Map ................................................................................ 70 

Appendix 3: Arduino Compilation Error Experiences .......................................... 71 

Appendix 4: Anti-flicker ...................................................................................... 73 

Appendix 5: Test Cases........................................................................................ 74 

Non-fault Cases................................................................................................ 74 

Fault Cases ....................................................................................................... 75 

Appendix 6: The Code ......................................................................................... 77 

 

  



R. G. Sparber June 27, 2020 Page 12 of 127 

The Original Configuration 
As intended by the manufacturer, 

the RainBird Irrigation Controller 

is connected to a number of 

electrically powered water valves 

via a cable. City water is applied to 
the input side of each valve. The 

controller applies power via the 

cable to one valve at a time to send 

water to the corresponding zone. 

 

As viewed from a state diagram, the Irrigation 
Controller powers up in the "Start" state. From 

there we can move to one of three states. Either 

no zones are active, one zone is active, or more 

than one zone is active9. The irrigation  

controller can move between one zone active 

and no zones active as needed.  
 

 

This behavior can be viewed on a 

time line. From start at time 0, we 

move to no zones active. Water 

flow is 0.  
 

At time 1 Zone n turns on and 

flow starts to rise. It takes time for 

the pressure to build up in the 

pipes and for any pop up sprayers 

to rise. I call this the transient time and is less than 10 seconds for my small 
residential system. 

 

At time 2 the flow has stabilized and we are around the average flow rate. The rate 

could vary as a function of water pressure and sprinkler head variation but is 

expected to be within ±30% of the average. Between time 2 and 3 Zone n is 

running at full flow.  
 

 
9 This last state can only occur manually. 



R. G. Sparber June 27, 2020 Page 13 of 127 

At time 3 the zone turns off and the flow starts to drop. At time 4 the flow is back 

to 0. This is the second transient time and is also less than 10 seconds. We just 

transitioned from one zone on to no zones on. 
 

  



R. G. Sparber June 27, 2020 Page 14 of 127 

Auditing A Zone 

 

The FMC assumes that the first time it watches a zone run, all is well. It is 
therefore essential that the user verifies there are no faults. 

 

The FMC can be turned into a flow meter by 

holding down the PEST button when power is off, 

turning on power, and then releasing the button. 

Power cycle the FMC when done measuring flow. 
 

Turn the zone on manually. Then walk along the zone. If an emitter or sprinkler 

head should be putting out water and is not, time to repair it. 

 

One way to detect leaks in a zone is to block all ¼ inch lines 

and see how much flow is left. This can be done by bending 
each ¼ inch line in half and securing it with a piece of wire 

or bag tie. No water should then come out of the emitter. 

With all ¼ inch lines blocked, the flow seen by the FMC 

will be from leaks. 

 

 
 

 

  



R. G. Sparber June 27, 2020 Page 15 of 127 

Fault Scenarios 
 

Of course, things do go wrong. A leak can develop 

between the city water supply and the valves. With no 

valve in the way, the leak cannot be stopped except by me 

turning off the city water.  
 

 

 

 

 

 
 

 

 

 

We need to measure the flow, determine it is more than 

the Leakage limit, and sound a "Major Alarm". Of course, 
this assumes the leak occurs downstream of the flow 

measuring device. 

 

 

 

 
  



R. G. Sparber June 27, 2020 Page 16 of 127 

 

 
 

More likely is a leak in a zone downstream from the valve. 

As long as the zone is active, excess water will flow. But 

when we return to having all zones off, the leak stops. 

 

 
 

 

 

 

In this time line we start out the 
same as the non-fault case. The zone 

is initially off and the flow is 0. At 

time 1 the zone turns on and the 

flow starts to build. At time 2 the 

flow is at the average. But at time 3 

the flow builds up a second time. 
Maybe a pipe burst or a sprinkler 

head blew. We end up at a flow 

more than 30% above average. At time 4 the controller turns off the zone, not 

knowing that a fault has occurred. The flow then drops back to 0 at time 5. 

 

 
 

 

  



R. G. Sparber June 27, 2020 Page 17 of 127 

Blocking the Faulted Flow 
 

 

Now, what if we added a new 

function that was able to monitor 

the flow and the state of each 
zone. When it saw excessive flow, 

the new function would turn the 

zone off (red lines) and sound an 

alarm.  

 

When the controller turned this 
zone off at time 5, the new 

function would stop interfering. 

 

 

So what is "average (non-fault) flow"? In order to reduce the burden on the user, 

the system will assume that the first time a zone runs, it is normal. The software 
will record the average flow for this run and save it as normal flow. If the next time 

the zone runs it is within 30% of this historical data, all is fine. The new run 

becomes the historical data. If a fault is detected, the previous historical data is 

kept.  

 

There is a blind spot here: if a zone is faulted while running for the first time, the 
flow will be assumed normal and become the historical data. The user can 

manually clear out all historical data so the system can learn anew. 

 

  



R. G. Sparber June 27, 2020 Page 18 of 127 

Detecting A Fault 
We do not want any false alarms but also do not want to miss faults. Experience 

has taught me that normal flow can vary ± 25%. To avoid false alarms, we want 

our limit to be greater than this variation. RainBird has their limit set at ±30% 

which is reasonable10.  

 
If a zone consists of sprinkler heads, the nominal flow will be much larger than 

with drip but a blown head will pass more water too. I don't have any problem 

detecting a blown head. However, a cracked riser could go undetected if it passes 

less than 30% of the total. 

 

Here is a case study of a poorly designed zone. 

 

The FMC tells me this zone uses 2.46 GPM. I was able to sequentially close off 

flow and build this map. Additionally, I introduced two faults to see how the flow 

would change. Cutting a ¼ inch line near the raised bed caused an increase of 0.6 

GPM. Far down the soft pipe run I only measured a 0.3 GPM rise due to a cut ¼ 
inch line.  

 

30% of 2.46 GPM is 0.74 GPM. Therefore, neither fault will trigger an alarm. At 

the risk of causing a false alarm, I could reduce my alarm threshold to below 
0.3 𝐺𝑃𝑀

2.46 𝐺𝑃𝑀
 × 100% = 12.2%. Alternately, I could just accept that this loss of 

detection is a consequence of an excessively large zone. Breaking this zone into 
thirds would solve the problem. 

 

My really big leaks have come from split soft pipe that is buried deep enough in 

coarse crushed rock as to not show a puddle on the surface. Such a leak would 

likely increase flow more than 30% so would alarm. To directly address this failure 

mode, I replace all leaking soft pipe with ½ inch schedule 40 PVC.    

 
10 Any zone with an average flow rate of less than 0.04 GPM is given a larger limit. 



R. G. Sparber June 27, 2020 Page 19 of 127 

Logic Overview 
To address faults, we need to  

1. monitor the flow on an active 

zone  

2. determine if it is too much  

3. try to shut down the valve  
4. check the flow again  

5. determine if it is now less 

than leakage  

6. and sound an alarm  

 

If closing the valve stopped the 
flow, we call it a Minor Alarm. 

Then we mark this zone so in the future it is prevented from running.  

 

If, after we try to shut down the zone, the flow is more than leakage, we did not 

stop the flow. It is then marked as a Major Alarm.  

 
If the flow is too small, we call it Underflow and declare a Minor Alarm. The 

plants are not getting enough water so shutting down the flow would only make 

matters worse.  



R. G. Sparber June 27, 2020 Page 20 of 127 

System Overview 
Flow Monitoring and Control is not a new invention. Companies like RainBird sell 

a similar function. They are used in application where a large amount of water 

normally flows and one leak can be costly. The price of such a system is over 

$1000 and I'm sure it pays for itself quickly. But in my little home irrigation 

system, this price tag is out of the question. Mine cost around $150. 
 

I will call this new function "George". 

He sits between the Irrigation 

Controller and all of the valves.  

 

George can see which valves have 
been operated by the Irrigation 

Controller and also how much water is 

flowing. 

 

If the leak cannot be stopped, George must sound an alarm immediately. I must 

then manually turn off the city water. 
 

If the leak is only flowing while zone n is active, George can turn off valve n every 

time the controller turns it on. Then he can sound an alarm during the day. No need 

to wake me up if it is night. 

 

My RainBird Controller automatically turns on only one zone at a time. The user 
can manually turn on more than one zone. In this case, the user must deal with any 

excessive flow. Since George only looks at the total flow, he would not be able to 

figure out which zone was in trouble. 

 

The user can also manually turn on a zone right on the valve. This will look like an 

uncontrolled leak and generate an Overflow Major Alarm. To avoid such 
excitement, it is best to manually turn on zones via the Irrigation Controller.  



R. G. Sparber June 27, 2020 Page 21 of 127 

Details of the Existing System 

 

A seven conductor cable carries control power from the controller to the valves. 

When the controller applies about 24 volts AC to a zone wire, the corresponding 

valve opens and water flows in the associated zone. 

 
  



R. G. Sparber June 27, 2020 Page 22 of 127 

Introduction to the New Functionality 

The Flow Measuring Device 
George depends on knowing the precise flow rate in order to 

do his job. Therefore, the first thing I bought was a water 

meter. It was on eBay for $27 including shipping. This 

meter is a Badger model 25 with a plastic body11.  
 

By removing a screw (red arrow),  

the readout head comes off. This provides access to a 

surface with a spinning steel bar under it. The bar turns as 

a function of flow through the meter. I see one revolution 

every 0.028 gallons of flow12.  
 

I sense the steel bar with a magnet attached to an arm. The 

arm is supported by a ball bearing so is free to spin. A 

magnetic sensor suspended over the path of the magnet 

reports each revolution. It outputs pulses that are read by 

George. 
 

 

 

 

 

 
By measuring the flow over 1 minute, George calculates the 

Gallons Per Minute (GPM). The meter connects between the 

city water inlet and my valves and will provide water usage for 

my irrigation system. This is necessary but not sufficient for 

knowing the water usage per zone. 

 
Logic is needed to look at which zone is active and how much 

water is flowing. 

  

 
11 The picture is of a bronze body meter. The plastic ones cost less and are black. 
12 I used the city's water meter while I counted revolutions to determine this conversion factor. 



R. G. Sparber June 27, 2020 Page 23 of 127 

On 12/13/2019 I was searching for an off-the-shelf flow measuring device and 

came upon flows.com which is owned by Assured Automation. They are located in 
New Jersey. They sell the WM-PD-050 low volume flow measuring device. There 

is an option to add an electrical contact that closes each time 0.05 gallons passes 

through it. The price, including shipping/handling and tax is about $100.  

 

This is a major find because it means that all components of the Irrigation Flow 

System can be bought, rather than fabricated. 
 

 

  



R. G. Sparber June 27, 2020 Page 24 of 127 

The Flow Monitor and Control 
The second piece of the puzzle is the Flow Monitor and Control 

that will read the flow signal from the water meter plus read and 

control the signals in the cable. This intelligence will have control 

of the valves including overriding the Irrigation Controller if a 

fault occurs in the valves or irrigation zones. 
 

 

 

 

 
The FMC is built using discrete parts plus an Arduino 

system on a board. Since this is a prototype, I used a 

board much larger than ultimately needed. These 

things do have a tendency to grow over time. 

 

If turned into a real product, I expect the electronics to 
be all Surface Mount Technology. It likely could be 

slightly larger than the display. 

 

 

 

 

 
 

Presenting the Design 
I have no interest boring you with how I arrived at the following design. Instead I 

will present the illusion that it was a simple task with no dead ends or false starts.  

 
The hardware will be presented first starting with a high level view and ending 

with circuits. Then the software will be presented starting with a high level view 

and ending in code. 

 

  



R. G. Sparber June 27, 2020 Page 25 of 127 

Level One System Block Diagram 
The Flow Monitor and Control 

taps into each zone output of the 

Irrigation Controller. It also 

connects to the Common (COM) 

wire. Under non-fault 
conditions, "Common out" 

(COM out) connects to COM.  

 

 

 

 
 

 

All of the valves have two wires. One wire connects to a zone wire. The 

other wire is joined with all other valves into a single conductor called 

Common. Apply power between any zone wire and Common and that 

valves will operate. 
 

 

 

 

 

The figure shows the flow signal connected to wires in the underground cable. In 
my case, the original cable had no spare wires so I had to run another cable.  

 

 

  



R. G. Sparber June 27, 2020 Page 26 of 127 

Level Two System Block Diagram  

  
 
The FMC's Human/Machine Interface consists of a display, two buttons, and a 

piezoelectric beeper. The beeper can be seen on the left side of the box (red arrow). 
 

On many screens you will see "D[xx" where "xx" is a number between 0 and 70. 

This is a countdown timer that tells me how long until the next update. If during 

the day, you will see "D". At night, it will be "N". Remember that Minor Alarms 

sound only during the day. Major Alarms sound when they occur. 

 
It is also common to see the flow rate on the 

second line. Here you have 4.54 GPM. It is 

being compared to the reference which is 

also 4.54. If there was no reference yet, you 

would have seen "ref-". After the zone has 

run once, the "-" is replaced by the reference flow. 
 

The top button clears all alarms. If the problem has not been corrected, the alarm 

will reappear after 70 seconds. The bottom button will temporarily silence the 

audible alarm. A Minor Alarm will stay quiet for 24 hours. A Major Alarm will 

return in 15 minutes.  

 
The audible alarms emanate from the piezoelectric beeper. Intentionally, it is 

extremely annoying. A Minor Alarm will be on for 0.3 seconds and off for 2 



R. G. Sparber June 27, 2020 Page 27 of 127 

seconds. A Major Alarm will be on for 0.1 seconds and off for 0.1 seconds. These 

patterns were chosen so they would not sound like a smoke alarm. 

Flow Monitor and Control Inputs 
The FMC will monitor all outputs of the Irrigation Controller so it knows what 

zone is supposed to be active. 

Under automatic control, there 

should be only one zone 

running at a time.  

 

The FMC will also accept the 
common wire. This is the 

return path for all valves. If 

the FMC detects excessive 

flow through a valve, it will be 

able to disconnect the 
common wire and remove 

power to all valves. 

 

 

The light sensor is located outside and outputs a logic 1 when the sun is out. It tells 

the system when there is daylight so safe to sound minor 
audible alarms.  

 

This approach lets me avoid the cost and complexity of 

including a real time clock. I do not need to know the 

exact time, just that it is a reasonable hour to sound a non-

urgent alarm. 
 

The irrigation water meter has a Hall Effect magnetic sensor attached to it. For 

every 0.028 gallons of water passed through the meter, the sensor will generate a 

pulse on the Flow line (red arrow). The FMC counts these pulses over time to 

determine flow rate. The maximum flow I have seen is 15 GPM. This means a 

pulse every 
 

15 𝐺𝑎𝑙𝑙𝑜𝑛

𝑚𝑖𝑛𝑢𝑡𝑒
 ×  

1 𝑝𝑢𝑙𝑠𝑒

0.028 𝑔𝑎𝑙𝑙𝑜𝑛𝑠
=  

1 𝑝𝑢𝑙𝑠𝑒

1.9 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠
. 

 

The software has been designed to keep up with this pulse rate. 

 



R. G. Sparber June 27, 2020 Page 28 of 127 

 

 
The FMC receives unregulated 

12V DC.  

It is used directly to run the relay 

that switches common and also 

to power the piezoelectric 

beeper. Most of this power feeds 
into a 5V regulator which 

supplies the rest of the board. 

 

 

 

 

Flow Monitor and Control Outputs 
The FMC switches the switched 

common line between the 
common line at its input and an 

open circuit. 

 

The LCD display tell the user 

status. 
 

Power is supplied to the magnetic 

sensor on the water meter. 

 

The audible alarm is sounded by 

the software to alert the user of 
any fault conditions.  

 

  



R. G. Sparber June 27, 2020 Page 29 of 127 

Level Three System Block Diagram 
The FMC is controlled by an 

Arduino Pro Micro 5V/16 

MHz. In runs on 5V and has 

a 16 MHz clock. The 

Arduino is paired with a 
MCP23017 port expander to 

provide sufficient digital 

input and output pins.  

  

Starting at the top, we have 

unregulated 12V DC coming 
from a wall wart. This 

power supply can deliver up 

to 500 mA. The voltage is 

fed to the piezoelectric 

beeper and to the relay that 

switches the common wire. 
A 5V regulator brings the 

12V down to a level used by 

the rest of the electronics. 

 

Below the 5V regulator are 

our signal converters. They 
sense 24VAC on the zone 

leads and convert them to 5V logic levels. 

 

Next we have the All Zones Off function. It contains a normally closed relay under 

software control. When no power is applied to this relay, the "common" wire is 

connected to the "switched common" wire. When needed, the Arduino will send an 
active AZO signal to the All Zones Off box which will energize the relay and 

disconnect the switched common from the common wire. This will cut power to all 

valves. Note that if the FMC loses power, it will become transparent to the 

RainBird Irrigation Controller. 

 

  



R. G. Sparber June 27, 2020 Page 30 of 127 

The PEST audible alarms and clear alarm buttons feed 

directly into the port expander which has been configured to 
connect 20K pull up resistors.  

  

The light sensor generates a digital signal compatible with 

the port expander. The sensor was placed where it can detect 

daylight. If an irrigation fault is detected and controlled, the resulting alarm won't 

sound until the sun comes out. No need to wake me.  
 

The flow signal from the irrigation water meter feeds directly into the port 

expander. 

 

Software is used to remove any mechanical bounce in the buttons. 

 
The Arduino has three outputs.  

 

During an irrigation fault condition, it drives the AZO 

signal which cuts power to all valves and hopefully stops 

water flow.  

 
It drives an audible alarm, AA, to notify the user when a 

problem has been detected.  

 

And finally, The Arduino feeds the Liquid Crystal Display to provide system 

status. While the other three outputs are single pins, the display takes 6.  

 
  



R. G. Sparber June 27, 2020 Page 31 of 127 

Built In Testing Features 
In order to facilitate testing, a flow simulator has been built 

into the software and hardware. The port expander can 

output a pulse stream equivalent to a flow of 4.5 GPM. It 

can also output 9 GPM and 2.25 GPM. These signals are 

used to test nominal, Overflow, and Underflow states. By 

moving a jumper I can select the flow sensor or simulated 

flow. The jumper is shown in the flow sensor position. 
 

My jumper block is made from a length of connector to 

make it easier to grasp around all of those pins. 

 

 

 
 

 

 

Not shown in the diagram are two jumpers that can simulate 

Zone 1 and Zone 2 being active.  Here you see both jumpers 

set to normal operation. 
 

 

 

 

 

An LED with limiting resistor connects across the relay coils. This makes it easier 
to see when the software has disconnected the switched common wire from the 

common wire. 

 

Additionally, there is a software switch called SpeedUp. When turned on, the 

software only measures flow for 10 seconds rather than a full minute. It also 

shortens the PEST intervals to 100 seconds. This makes testing the software 
quicker.  



R. G. Sparber June 27, 2020 Page 32 of 127 

Level Four System Block Diagram 
At this level of detail, each functional block is described. 

Flow Sensor Mechanism 
 

 

 

I started with a Badger model 25 flow meter. The readout 

mechanism was lifted off  
 

 

 

 

 
 

 

and my interface hardware dropped in place. 

 

 

 
 

 

 

 

 

 
 

The interface hardware was an unfortunate addition. 

Originally I thought that there was a spinning magnet 

inside the water meter. This could be directly sensed 

by a Hall Effect device. But upon investigation, I 

discovered that a steel bar was in there. The interface 
hardware senses the bar and generates a spinning 

magnetic field. Then my Hall Effect device can do its 

job and convert revolutions to pulses. By using the 

City's water meter as my reference, I found that one 

revolution equals 0.028 gallons of flow. 

  



R. G. Sparber June 27, 2020 Page 33 of 127 

The bar has a spigot on the back 

that is a close fit to the ID of a ball 
bearing. The bar has a ¼ inch 

diameter hole in it that accepts a 

neodymium magnet 1/8 inch thick. 

I locked it in place with 3 punch 

marks. At first I had two magnets 
but found that this prevented 

movement. 

 

 

 

 
 

 

I later found that I needed to move 
the bar closer to the top of the 

meter in order to insure reliable 

coupling. Placing a 3/8 inch 

diameter by 1/8 inch thick magnet 

on top did the trick. 

 
 

 

Looking at the underside of the enclosure, you 

can see the ball bearing's inside diameter. The 

spigot slides through and is secured with a screw 

on the other side. 
This hole accepts the Hall Effect sensor. 

  



R. G. Sparber June 27, 2020 Page 34 of 127 

With the Hall Effect sensor installed, the 

power, ground, and output leads are 
routed to a terminal block. The 

electrolytic capacitor completes the 

assembly.  

 

A 4 inch diameter PVC pipe end is used 

as a weather tight enclosure. The cable 
running back to the FMC passes through 

this cover and terminates on the terminal 

block.  

 

 

 
The resulting assembly came out nice but 

in the future I hope to be able to simplify 

the interface hardware and go with a 

proximity switch that can sense the 

spinning steel bar. The proximity switch I 

tried did not work. 
 

 

 

 

 

 
I did spend a lot of time sitting with the 

installed flow meter trying to get it to work. 

This was not without excitement. That is a 

Western Diamond Back rattlesnake. My 

wrist was about one inch from its head when 

I realized it was there. Fortunately, it was 
early morning and cold out. The snake did 

not perceive me to be a threat and was also 

rather slow. I was able to convince it to move 

on by filling the pit with some water. I 

watched as it went back through a hole in the 

block wall. Closing that hole worked. No 
more company while I work in the valve pit. 

Yes, I do look carefully before climbing in. 



R. G. Sparber June 27, 2020 Page 35 of 127 

 Flow Monitor and Control 
Here is an overview of the subsystems on the perf board. 

 

 

2 row by 16 character LCD 

 
Arduino Pro Mini 
 

Signal Converter Subsystem 

 

 

 

 
 

 

 

 

 

Port expander 
 

 

Relay driver and status LED 

 

5V regulator 
 

Testing jumpers 

 

 
The relay is mounted on the back side.  



R. G. Sparber June 27, 2020 Page 36 of 127 

Signal Converter Subsystem 

The zone wires will either have about 24V RMS on them or be open circuits. The 

signal converter circuit monitors this AC voltage and puts the state in a format 

readable by the Arduino. 

 
The signal converter circuit 

consists of 2 resistors and 2 

NPN transistors. The input is 

the voltage Vzone n and the 

output is VZn.  

 
When Vzone n is above about 

2V, Q1 turns on. This pulls 

down on the Zn node and 

presents a logic 0 to the port 

expander. 

 
While Q1 is on, Q2 has about  

-0.65V across its base emitter 

junction. This keeps Q2 off but does no damage.  

 

When Vzone n is below about -2V, Q2 turns on. This pulls down on the Zn node and 

presents a logic 0 to the port expander. 
 

When Vzone n is less than 0.6V but greater than -0.6V, both transistors will be off. 

The output then gets pulled up to Vcc  (+5V) by internal pull up resistor R3. 

 

Note the red vertical line on the VZn trace as Vzone n changes from 

positive to negative. This results from Vzone n being less than 2V 
in magnitude. The spike is treated the same as bounce on a 

mechanical switch. 

 

See Appendix 1 on page 69 for details on this narrow pulse which is about 320 

microseconds wide. 

  



R. G. Sparber June 27, 2020 Page 37 of 127 

All Zones Off 
 

 This functional block is an 

electromagnetic relay with contacts that 

are closed when power is removed. When the FMC loses power or when all is idle, 

AZO is near 0 volts. This turns off Q1 and no power is sent to the relay. The 
common wire is therefore connected to the switched common wire. 

 

When AZO becomes active (around 

5V), Q1 turns on.  The relay powers 

up along with the optional indicator 
LED next to it.  

 

When the relay is operated, the 

normally closed contacts open. The 

current being broken is AC and 

passes through the valves which are 
inductive. This means that arcing can 

occur on these contacts. The snubber 

circuit, C1 and R3, provide an 

alternate path for the transient 

current. This minimizes the arcing which can erode the contacts and cause the 

Arduino to go off the rails. 
 

 

 

  

 



R. G. Sparber June 27, 2020 Page 38 of 127 

When the relay is 

operated, the 
switched common 

lead is disconnected 

from common. This 

means the signal 

converters will be 

connected to a long 
cable that floats at 

the far end. 

Electrical noise can be picked up and 

cause zones to randomly look active 

when they are not.  

 
Even worse, if one zone is active so 24V AC is applied to one zone wire and the 

switched common lead is floating, all zones will be at this voltage. This say they 

are all active.  

 

The problem is solved in software. When at least one zone is active and the relay is 

then operated, we just wait for all zones to turn off. That will occur when the one 
zone goes inactive. When all zones turn off, we again monitor zone states. 

 

If the contacts on the relay fail to conduct due to built up oxides caused by arcing, 

the software will see all 6 zones turn on when any one of them turns on.  

 

Any time all 6 zones are seen in the on state while the relay is not operated, we 
assume the relay is the problem. By turning the relay on and off quickly 20 times, 

we attempt to break up the oxide layer. If that works, we return to normal 

operation. If we still see all 6 zones on, we monitor the state and only return to 

normal operation if the fault goes away. The display will say "hardware failure" as 

long as the fault is detected or until the clear all alarms button is pushed. 

 

  



R. G. Sparber June 27, 2020 Page 39 of 127 

Pushbuttons 
When either of the pushbuttons is depressed, a contact 

closes and the port expander 

sees a logic 0. When released, 

the internal pull up resistor 

generates a logic 1. 
 

This closing action may cause 

the contacts to bounce. 

Software is used to filter that 

out. We take 10 readings and 
average the result. If it is less 

than ½, we call a zero. Greater than or equal to ½ is a one. 

  



R. G. Sparber June 27, 2020 Page 40 of 127 

Light Sensor  
 

 

 

 

 
 

 

 

 

 
 

I am using an ALS-PT19 light sensor from Adafruit Industries. When light shines 

on the sensor, the phototransistor, Q1 conducts. This moves the output voltage 

towards the voltage on the positive terminal. Without light, Q1 is off and the 

output voltage moves towards the voltage on the negative terminal.  

 
My light sensor is mounted inside a glass bottle that is a tight 

fit into a PVC 45° coupler. I happen to have two wire speaker 

cable. Since the ALS-PT19 has three terminals, I would need 

to run two of these speaker cables and have half of one cable 

unused.  

 
Instead, I chose to not use R1. Then I was able to use a single cable between sensor 

and Arduino board. Over at the Arduino I duplicated R1 plus put a 5K variable 

resistor, R3, from the output signal to ground. It was then possible to adjust the 

variable resistor so daytime generated a logic 1 and nighttime produced a logic 0.  

 

This scheme lets me avoid the cost and complexity of having a battery backed up 

real time clock.  

https://cdn-shop.adafruit.com/1200x900/2748-00.jpg


R. G. Sparber June 27, 2020 Page 41 of 127 

Flow Interface 
The Hall Effect Sensor pulls the Flow lead down to ground very quickly to 

generate a logic 0. With a logic 1 it just lets go. Rise time is defined by the 

capacitance of the cable13 and a pull up resistor. This means that the fall time is 

extremely small compared to the rise time. Both are much smaller than the 

minimum period of the pulse stream. 
 

 

 

 

 
 

 

 

The fast fall time is not a good thing. It causes 

undershoot at the port expander that is greater 

than what the device can safely handle.  
I see about -0.8V which is beyond the -0.5V spec. 

 

By placing a 50 ohm resistor in series with the Hall Effect device's output, I was 

able to slow the fall time and therefore reduce undershoot. Now the undershoot is 

about -0.2V so all is well. It still takes only about 200 ns to go from +5V down to 

near 0. 
   

 
13 My cable is 50 feet long. 



R. G. Sparber June 27, 2020 Page 42 of 127 

 

There is a 10K pull up 

resistor at the port expander 

which assists the internal 
"weak" pull up. The result is 

a rise time of about 40 µs 

which is fine given that the 

minimum period for Flow 

pulses is 2 ms.  

 
 

 

 

 

 

 
Each time the water meter's 

nutating disk14 moves, my 

spinning magnet15 follows it. 

The Hall effect sensor sees this 

magnetic field and pulls low. 

The software responds to this 
high to low transition. To be 

consistent with other inputs, I 

use the debounce software to 

read the Flow signal. Here you 

see a period of 640 ms. 

 
  

 

 
14 Here is a good explanation: https://www.youtube.com/watch?v=hxuFuT-RQyI  
15 Refer back to page 25. 

https://www.youtube.com/watch?v=hxuFuT-RQyI


R. G. Sparber June 27, 2020 Page 43 of 127 

Give a period of 640 ms we can verify the conversion process works. Each pulse 

represents 0.028 gallons. Therefore 
 

1 𝑝𝑢𝑙𝑠𝑒

640 𝑚𝑠
 ×  

60,000 𝑚𝑠

1 𝑚𝑖𝑛𝑢𝑡𝑒
 ×  

0.028 𝑔𝑎𝑙𝑙𝑜𝑛𝑠 

 𝑝𝑢𝑙𝑠𝑒𝑠
= 2.63 𝐺𝑃𝑀 

 

The display showed 2.69 GPM which is a difference of 0.03 GPM or 1 pulse. All 

readings are ±1 pulse so this is reasonable. 

 

The maximum flow rate that I have directly measured is around 15 GPM. The 
software can handle up to 63 GPM. 

  



R. G. Sparber June 27, 2020 Page 44 of 127 

Power 
A wall wart supplies unregulated 12V DC at up to 500 mA. It is used directly to 

power the relay and the piezoelectric beeper. It also feeds a 3 terminal regulator 

that supplies 5V to the rest of the FMC. 

 

The Arduino 
I am using a Pro Micro 16 MHz 5 volt device from Sparkfun.com. For about $20 

(2017 price), you get an insane amount of 

functionality. This device is far more than 

just a computer. Much has been written 

about it so I won't duplicate that effort. 

 

 
 

 

 

It is important to understand the two basic ways a pin is named: physically and 

logically.  

 

Physical: its physical location. When looking at the socket that will accept the Pro 

Micro, pin are numbered starting at 1 and sequentially numbered in a counter 

clockwise fashion when looking down on the socket from the top. Pin 1 is in the 

upper right corner. 

  



R. G. Sparber June 27, 2020 Page 45 of 127 

Logical: the logical names of the pins. Some of these names are letters, some are 

numbers, and the rest are a mix of letters and numbers. For example, physical pin 1 
has the logical name TXO. It can get rather confusing at times. Consider physical 

pin 5 which is logical pin 2. On top of this, you can configure each of these logical 

pins to be any one of 

a number of types. 

This further changes 

the name. For 
example, logical pin 

2 can be configured to 

be a Serial Data port 

(SDA) or to be 

Interrupt 1 (INT1).  

 
You really need a score card to keep it all straight! Fortunately, Sparkfun has done 

a masterful job of providing such a card as can be seen on the next page.   



R. G. Sparber June 27, 2020 Page 46 of 127 

 

 

 

The D# values are the logical pins recognized by the software. The physical pins 

are shown in the above color graphic. I2C uses pin 3 for Serial Clock so we can't 

use D3. Serial Data is on pin 2 so we can't use D2. There is also a 10K pull up on 

RESET. 

 
16 See page 37 for details. 

Arduino D# Outputs Signal Destination 

0 AZO 

4 AA 

5-10 Display16 



R. G. Sparber June 27, 2020 Page 47 of 127 

One limitation of the Pro Micro is the number of input/output pins. This is easily 

solved by adding a MCP23017 Port Expander. The device is controlled via I2C 
using the Serial CLock and Serial DAta pins.  

  

 

 

 

 
 

 

 

 

 

 
 

 

Connect pin #12 (SCL) of the expander to the Arduino SCL pin plus add a 1K 

pull-up resistor to 5V. 

Connect pin #13 (SDA) of the expander to Arduino SDA pin plus add a 1K pull-up 

resistor to 5V. 
Connect pins #15, 16 and 17 of the expander to ground (address selection). 

Connect pin #9 (VDD) of the expander to 5V. 

Connect pin #10 (Vss) of the expander to ground. 

Connect pin #18 (RESET) through a 10K ohm resistor to 5V (reset pin, active 

low). 

 
From Adafruit: https://cdn-shop.adafruit.com/datasheets/mcp23017.pdf 

 

GPA0-7 and GPB0-7 give a total of 16 input/output pins.  

 

An example of how to use this device can be found at 

https://github.com/adafruit/Adafruit-MCP23017-Arduino-
Library/blob/master/examples/button/button.ino#L1 

 

  

https://cdn-shop.adafruit.com/datasheets/mcp23017.pdf
https://github.com/adafruit/Adafruit-MCP23017-Arduino-Library/blob/master/examples/button/button.ino#L1
https://github.com/adafruit/Adafruit-MCP23017-Arduino-Library/blob/master/examples/button/button.ino#L1


R. G. Sparber June 27, 2020 Page 48 of 127 

We must include two header files 

available from Adafruit: wire.h and 
Adafruit_MCP23017.h.  The file 

"wires.h" sets up the I2C interface. 

 

 

 

 
 

 

Port Expander Input 

Name 

Virtual 

pin# 

Physical pin 

# 

Signal 

Source 

GPA0 0 21 Zone 1 

GPA1 1 22 Zone 2 

GPA2 2 23 Zone 3 

GPA3 3 24 Zone 4 

GPA4 4 25 Zone 5 

GPA5 5 26 Zone 6 

GPA6 6 27 PAB 

GPA7 7 28 CAB 

GPB0 8 1 LS 

GPB1 9 2 Flow 

This leaves 6 spare virtual I/O pins (10 - 15) on the port expander. I use three of 

them as outputs of a flow simulator: 

 

Port Expander Input 

Name 

Virtual 

pin# 

Physical 

pin # 

Description 

GPB2 10 3 Half of nominal 

GPB3 11 4 nominal 

GPB4 12 5 Twice nominal 

 

 

This flow simulator will generate a square wave of 50% duty cycle and output the 
above 3 signals as long as the program is running. The cycle rate of the loop is 

divided by the FlowSimulatorDivider value. Additionally, jumpers exist that can 

pull Zone 1's and/or Zone 2's input to ground to simulate it/them going active.  

 
  



R. G. Sparber June 27, 2020 Page 49 of 127 

The rectangles represent the position of the jumper 

blocks. I can select twice nominal flow, nominal, or half.  
 

 

 

 

When not testing, the jumper connect to the flow sensor. 

 
 

 

I can also switch between simulate active and normal for 

zones 1 and 2. As shown, zone 1 is in normal operational 

mode while zone 2 is simulated active. 

 
This simulation subsystem was invaluable for debugging the code. 

  



R. G. Sparber June 27, 2020 Page 50 of 127 

The Liquid Crystal Display 
I am using a Sparkfun Basic 16x2 Character LCD - Black on Green 5V for $14. It 

can be controlled with 6 pins as shown in 

https://www.arduino.cc/en/Tutorial/HelloWorld?from=Tutorial.LiquidCrystal  

Support circuits include a 10K ohm contrast control potentiometer and 220 ohm 

backlight power resistor: 
https://www.arduino.cc/en/uploads/Tutorial/LCD_Base_bb_Schem.png 

 

 

  

LCD 

Inputs 

LCD 

pin 

Pro Micro 

Outputs, D# 

RS 4 5 

EN 6 6 

DB4 11 7 

DB5 12 8 

DB6 13 9 

DB7 14 10 

https://www.arduino.cc/en/Tutorial/HelloWorld?from=Tutorial.LiquidCrystal
https://www.arduino.cc/en/uploads/Tutorial/LCD_Base_bb_Schem.png


R. G. Sparber June 27, 2020 Page 51 of 127 

The Full Schematic 
Here is an overview. 

  



R. G. Sparber June 27, 2020 Page 52 of 127 

The zone wires from the Irrigation Controller pass through but are monitored. The 

Common wire goes into the FMC and back out. All of these wires go into Cable 1 

that runs out to the zone valves. 

 

Power from the wall wart feeds the 5 volt regulator along with the relay and 
piezoelectric beeper, not shown here. 

 

The Light Senor runs through a two conductor cable a short distance to where it 

can see daylight. 

 

The six zone interface circuits are identical. Note that zone interface 1 shows all 
detail and the rest are identical except for the names of the components. When 24 

VAC is seen on a zone line, the interface sends a logic 0 to the port expander.  



R. G. Sparber June 27, 2020 Page 53 of 127 

 

The port expander, MCP23017, outputs test flow signals that are selectable via 

optional jumpers.  It accepts inputs from the clear all alarms and PEST audible 
alarms  buttons.  

 

The Pro Micro Arduino controls the port expander via the I2C which consists of the 

Serial Data (SDA) and Serial Clock (SCL) lines. It drives the piezoelectric beeper 

via R1 and Q3 plus the relay via R9 and Q4. And finally, it drives the Liquid 

Crystal Display.  



R. G. Sparber June 27, 2020 Page 54 of 127 

Bill Of Materials 
Estimated cost is $80 plus the cost of the Badger flow meter, cable, and enclosure. 

Name Quantity Description Notes 

R1 1 50 ohms 1/8W Mouser.com 

R1.1 - R1.6 6 5.6K 1/4W Mouser.com 

R2.1 - R2.6 6 1.5K 1/8W Mouser.com 

R3 1 10K 1/8W  pot Mouser.com 

R4, R5, R9, R10, R12 5 10K 1/8W Mouser.com 

R6, R7 2 1K 1/8W Mouser.com 

R13 1 220 ohms Mouser.com 

R8 1 100 ohms 1/4W Mouser.com 

R11 1 2.2K 1/8W  Optional 

R14 1 5K 1/8W pot Mouser.com 

C1 1 10 uf 10V electrolytic Mouser.com 

C2, C3 2 0.1 uf Mouser.com 

Q1.1 - Q1.6, Q2.1 - Q2.6, Q3, Q4 14 BC550B or any general purpose 

NPN 

Mouser.com 

D1 1 any general purpose diode Mouser.com 

LED 1 any general purpose LED optional 

RELAY 1 OUAZ-SS112D,900 Mouser.com 

LIGHT SENSOR 1 ALS-PT19 Adafruit.com 

HALL EFFECT DEVICE 1 US5881UA Mouser.com 

PRO MICRO 1 Arduino Sparkfun.com 

PORT EXPANDER 1 MCP23017 Adafruit.com 

PIEZO 1 254-20C6-ROX Mouser.com 

LCD 1 LCD 00709 Sparkfun.com 

PUSH BUTTON 1 AND 2 2 any general purpose low power  

PERFERATED CIRCUIT BOARD 2 As needed  

CABLE 1, CABLE 2  As needed  

FLOW METER 1 BADGER MODEL 25 eBay.com 

FLOW SENSOR ENCLOSURE 1 See page 32  

FLOW MONITOR AND 

CONTROL ENCLOSURE 

1 Your choice  

5V Regulator 1 833-MC7805CT-BP Mouser.com 

12VDC at 500 mA unregulated 

power supply 

1 Your choice  

jumper 3 Two terminal blocks optional 

 
  



R. G. Sparber June 27, 2020 Page 55 of 127 

Software  
We have 6 zones. Normally no 

more than one zone is on at a 

time. Any zone can have a flow 

that is too low or too high. 

Depending on the fault, we 
might be able to stop excessive 

flow. At any time there can be a 

change in active zone or in fault 

state.  

 

 
 

 

The result is similar to a pinball machine with many possible 

states. For example, zone 1 might be running normally while 

zone 4 is in underflow and zone 5 is in overflow but 

controlled. The software must deal with all of these 
situations. Appendix 5 contains a list of my test cases. All of 

these cases passed but that does not mean the software is free 

of bugs. 

 

 

  

https://www.google.com/imgres?imgurl=http://media.gettyimages.com/photos/lucky-pinball-machine-made-by-williams-usa-20th-century-picture-id530027659&imgrefurl=http://www.gettyimages.com/detail/photo/lucky-pinball-machine-made-by-williams-usa-high-res-stock-photography/530027659&docid=JjGaBQTH9CVN1M&tbnid=dExqklZzbgknpM:&vet=10ahUKEwjj4O7X5qLYAhUG-GMKHaHKA5wQMwi0AiheMF4..i&w=697&h=1024&bih=672&biw=1422&q=pinball%20machine&ved=0ahUKEwjj4O7X5qLYAhUG-GMKHaHKA5wQMwi0AiheMF4&iact=mrc&uact=8


R. G. Sparber June 27, 2020 Page 56 of 127 

Overall Software Strategy 
Control constantly circulates between learning 

what is going on, determining what to do, and 

acting. This is a "polling" strategy which I prefer 

over an interrupt driven scheme. With polling, the 

software's behavior is known at all times. This 
makes debugging easier. 

  

An essential requirement is that each cycle through the loop take place faster than 

the time variant inputs change. Otherwise the real world's behavior will be missed 

by the software. 
 

 You have seen a bowl of cooked spaghetti. The strands are 

easily identified but not the ends. Of course, there is no 

"logic" to it. As my software was evolving, it was starting 

to look like spaghetti. Debugging and even comprehension 

quickly became too difficult for me.  
 

Life got better when I re-architected the code into functions. For example, Timer 

Control contains all timers. If another function wants to start, stop, or read a timer, 

it must send a flag. In this way, I always know to look at Timer Control if there is a 

problem with timing. 

 
When a flow measurement is taken, I define a "token". This 

token says the measurement is valid. If the token is used to 

inform the user via the LCD, it is still valid. But when the data 

is used to make a state change, the token becomes invalid and 

the data is ignored. This scheme prevents old data from being 

reevaluated while we collect new data. 
 

  

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiWwNTG9rjVAhVT0GMKHRX0A0wQjRwIBw&url=http://www.bigkidsmallcity.com/2014/12/quick-easy-dinner-simple-spaghetti-holiday-veggies/&psig=AFQjCNGLRBHFABSGKKGMwkFr2MqRF6zreA&ust=1501776227882110


R. G. Sparber June 27, 2020 Page 57 of 127 

Many timers are used. In some cases I just need to know that a given timer is 

running. In other cases I need to know when it starts and when it ends. Flags are 
defined in the Timer Control subroutine and used by the rest of the code. 

 

If you make it all the way down to the code, you will see that I have taken full 

advantage of variables and subroutine naming freedom. These tags have been 

selected to help me remember what is going on. For example, The subroutine used 

to get zones states is called GetZoneStates( ). My flag that tells me I just set the 
inhibit flag active is called JustSetInhibitActive. These long names are removed 

during compilation so do not take up space in the Arduino's memory. By using 

copy and paste, I avoid typing them more than once.  

 

  



R. G. Sparber June 27, 2020 Page 58 of 127 

Level 1 Flowchart 
When viewed for the first time, I'm sure there is an urge to just turn the page. If 

you just want to run the code, there is no need to go further. But if you want to 

understand the code, here is the first step. 



R. G. Sparber June 27, 2020 Page 59 of 127 

When the program starts for the first time, it has no 

flow data on each zone. After it has run each zone, that 
data exists. 

 

 

 

 

 
 

 

Starting at "No zones 

active",  

we go to "zone n active". 

The flow is measured for 
60 seconds. When done, we 

see if the zone's valve was 

closed due to a previous 

fault. If it was not, we see if 

this zone has ever run 

before. If this is the first 
time, we have no historical 

flow data so cannot judge if 

there is a problem. If it has 

run before, we know what 

"nominal17" means so start 

judging the flow. If the 
flow is below 70% of 

nominal, we have 

Underflow and set Minor 

Alarm for this zone. Then 

we start the cycle over. 

 
If Above nominal by more 

than 30%, we close the 

valve every time this zone 

is active. Then we start the cycle over. 

 

If the flow is within 30% of nominal, it is ok and we start the cycle over. 

 
17 "nominal" uses too many characters on my LCD so I use "ref" there. 



R. G. Sparber June 27, 2020 Page 60 of 127 

If the valve has been closed 

when this zone is active, we 
check if it was just closed. If 

it was, we say the zone is in 

Overflow and then see if the 

flow is below the leakage 

limit.  

 
If closing the valve did not 

turn off the flow, we go to 

Major Alarm and wait for 

human intervention. We 

have an uncontrolled flow. 

 
If closing the valve turned 

off the flow, we call out a 

Minor Alarm for this zone. 

As we repeat the cycle, this 

zone is defined as in 

Overflow with Minor Alarm.  
 

On the next pass, we again 

measure the flow and see 

that the valve has been 

closed. But now we see that 

the valve has not just been closed. If the flow is still less than Leakage, the cycle 
repeats. If the flow is now greater than Leakage, we retire the Minor Alarm and 

escalate to a Major Alarm and wait for help to arrive.  

 

If a zone is in Overflow Minor alarm, every time it runs the FMC blocks the flow. 

  



R. G. Sparber June 27, 2020 Page 61 of 127 

When a zone turns off, we 

first check if it is in an 
alarm state. If not, we save 

the flow data collected 

while it was running and 

store that as the new 

nominal for this zone. If 

there is an alarm state for 
this zone, we do not save 

the flow data. 

 

When no zones are active, 

we constantly check that 

the flow is less than the 
leakage limit (green arrow). 

If excessive leakage is 

detected, we go to Major 

Alarm and wait for help. 

 

 
 

  



R. G. Sparber June 27, 2020 Page 62 of 127 

The automatic operation 

of the RainBird Irrigation 
Controller only turns on 

one zone at a time. 

However, it is possible 

for a user to turn on more 

than one zone. In this 

case, which I call 
MultiZone, we just wait 

until less than two zones 

are on. 

 

If all zones are active at 

the same time, we 
probably have a problem 

with our relay. If so, we 

turn it on and off quickly 

20 times and check again. 

If we are then seeing less 

than all zones active, we 
return to normal 

scanning. If we still see 

all zones active, we go to 

hardware fault Major 

Alarm. Then we return to 

scanning just in case the 
relay corrects itself. If so, the hardware fault Major Alarm is retired. 

 

  



R. G. Sparber June 27, 2020 Page 63 of 127 

Four secondary functions 

are not shown in this 
flowchart.  

 

The first is the display 

function. See the User's 

Manual, starting on page 

12 for what is shows. See 
also Appendix 4 which 

explains how I prevent 

flickering of the display. 

 

The second secondary 

function is audible 
alarms. A Minor Audible 

alarm sounds for 0.3 

seconds and is off for 2 

seconds. A Major 

Audible alarm sounds for 

0.1 seconds and is off for 
0.1 seconds. At any time, 

the user can push the 

PEST audible alarms 

button and it will bring 

silence. 

 
The third secondary function clears all alarms. All variables are initialized except 

for historical flow data. If a fault condition still exists, it will return in 70 seconds. 

 

The forth secondary function clears all alarms and historical flow data. This would 

be used if a change was made to the flow rate that was more than 30% from 

nominal. The FMC is powered down, the clear alarm button held down, and power 
is brought back up.  Then the clear alarm button is released. 

  



R. G. Sparber June 27, 2020 Page 64 of 127 

Major Subroutines 
Here you see the main subroutines that are in the loop and the subroutines called 

from them. 
GetZoneStates() 
 InitializeZone() 
  PopulateZones() 

FindActiveZone() 
ZonePower() 
TimerControl() 
 TransientTimeElapseTimer () 
 OneMinuteElapseTimer () 

MinorPestElapseTimer () 

MajorPestElapseTimer () 
MinorCadence() 
MajorCadence() 
AntiFlickerCadence() 

ZoneTransitionQ() 
  SaveOldZoneFlowMeasurement() 
  PrepareForNewZone() 

ProcessFlowInfo() 
GetFlowRate() 
DisplayFlowRate() 

SuspectRelay 
MoreThanOne() 
PossibleFault()  

NoZoneOnAndNoDataYet() 
NoZoneOnWithData() 
ActiveZoneNoDataYet() 
ZoneActive() 

JudgeFlowRate() 
MajorAlarm 

MultiZoneQ 
NoFlowDataQ() 
NoHistoryQ() 
SmallFlowQ() 
UnderflowQ() 
OverflowBeforeInhibitQ() 

ImmediatelyAfterInhibitFaultQ() 
AfterInhibitStableFaultQ() 
LeakageNoZonesActiveQ() 

RelayErrorControl() 
AlarmControl() 

CleanUpPrematureAlarmExitQ() 

DisplayFaultDetails() 
 RelayErrorQ() 

CABpressed() 
SoftwareError() 
CannotStop() 
Trying() 

HaveMinor() 
ManuallyClearAlarmQ() 
PestActiveAlarmQ() 
AudibleAlarmProcessing() 

  



R. G. Sparber June 27, 2020 Page 65 of 127 

GetZoneStates() looks at all of the zones and reports back which ones are active. 

To do this it calls three subroutines: 
 InitializeZone() 

  PopulateZones() 

FindActiveZone() 

 

ZonePower() turns the relay on and off under the control of an array of Inhibit 

flags. If the Inhibit flag for the active zone is true, then the relay is powered up and 
power is removed from this zone's valve. 

 

TimerControl() handles all timers including the transient timer, the one minute 

timer, PEST timers, and audible alarm cadence timers. Timers that only run when 

needed are initiated by telling them to start. When they start, the clear the start flag 

and raise a running flag. When timed out, the running flag is lowered. 
 

ZoneTransitionQ() looks at the previous active zone and the current active zone to 

see if there has been a zone transition. If so, it looks to see if the previous active 

zone had a fault. If not, it saves the flow data as the new historical flow. If there 

was a fault, it does not save the flow data. Then it prepares for the new zone being 

active. 
 

ProcessFlowInfo() performs three major tasks. First it measures the flow rate, then 

it displays the flow rate, and finally, it judges the flow rate to see if it is normal or 

faulted. The subroutine SmallFlowQ() checks the historical flow for the active 

zone in order to prevent a division by 0.   

 
RelayErrorControl() displays a message if the relay is stuck. 

 

AlarmControl() handles all alarms associated with flow. This includes displaying 

fault details, responding to a manual clear alarms request, responding to a PEST 

audible alarm request, and controlling the audible alarm. 

 
   

 

  



R. G. Sparber June 27, 2020 Page 66 of 127 

Software Structure 
Although it is possible to have multiple files that together hold the Arduino 

software, I have chosen to put it all in one file to minimize confusion and error. 

Separate files must be loaded is a specific order to link correctly. 

 

The following is an outline of how I ordered the segments of the program. Note 
that variables and constants defined outside of functions are accessible by all 

functions which is why you see so much going on before we reach Setup. See 

Appendix 6 on page 77 for the code. 

 

▪ Program name and version number - they are displayed at start up on the LCD 

▪ #include - pulls in libraries that define hardware. In my case I have EEPROM, 

an LCD display, and a port expander chip that uses I2C. 

▪ Constants and variables 

• MCP23017 port expander inputs 

• Arduino Outputs 

• States of the hardware and software 

• Timers  

• Rate of change of flow parameters 

• Flow level parameters 

• Input states like "Day" versus night and a button being pushed or not 

• Faults that are recorded and processed 

• Software error descriptions 

• LCD flicker reduction parameters 

• Diagnostic and built in simulator parameters 

▪ Hardware Initialization - port expander and LCD 

▪ Void Setup - this is where code is placed that only executes once. All of the 

input and output pins in the hardware are defined here. We also look at the 

pushbuttons to determine if the user wants all historical data erased or if they 

want flow measuring mode enabled 



R. G. Sparber June 27, 2020 Page 67 of 127 

▪ Void Loop - a collection of high level subroutines that hold the major 

functional blocks resides here. These subroutines are made up of lower level 

subroutines defined next. 

▪ Lower level subroutines - these are built from subroutines that are at the lowest 

level. 

▪ Lowest level subroutines - narrowly defined functions that act as my custom 

made program language. 

▪ End of file 

 

An important fine point: 

Looking at the code, you may spot something odd in my print commands to the 

LCD. The standard command would be 

 

lcd.print ("All alarms"); 
but I wrote 

lcd.print (F("All alarms")); 

 

You are looking at the F() subroutine which I found on an Adafruit forum18. F() 

tells the Arduino compiler to keep the string "All alarms" in program store rather 

than duplicating it in Static Random Access Memory (SRAM). Without this 
subroutine, the program runs out of memory used to store variables and strange 

things happen.  

 

For example, I was checking a small block of code because it did not seem to 

execute correctly. A series of Serial.println statements told me what was going on. 

I could see command 1 being reached followed by command 2. But rather than 
command 3 I saw that a subroutine was called. That code did not call this 

subroutine. It was corrupted memory caused by the SRAM being corrupted.   

  

 
18 First try the URL: https://learn.adafruit.com/memories-of-an-arduino/optimizing-sram but if this link is broken, 
search using " Adafruit managing sram F()" 

https://learn.adafruit.com/memories-of-an-arduino/optimizing-sram


R. G. Sparber June 27, 2020 Page 68 of 127 

Acknowledgements 
Very special thanks go to my wife, Donna, for putting up with me constantly at my 

computer writing and debugging the software. 

 

I welcome your comments and questions.  
 
If you wish to be contacted each time I publish an article, email me with just 

"Article Alias" in the subject line. 

 

Rick Sparber 

Rgsparber.ha@gmail.com 

Rick.Sparber.org 

 
 
  

mailto:Rgsparber.ha@gmail.com


R. G. Sparber June 27, 2020 Page 69 of 127 

Appendix 1: Zero Crossing Pulse Width 
 

The input voltage is specified at 

24V RMS but I measured 27V 

RMS. Assuming 24V RMS, that is 

a peak of √2  × 24𝑉 𝑅𝑀𝑆 =
34𝑉𝑝𝑒𝑎𝑘. This means that  

𝑉𝑧𝑜𝑛𝑒 𝑛 = 34 sin 𝜔𝑡 where 𝜔 =
2𝜋𝑓 = 2 × 3.14 × 60 𝐻𝑧 =

377
𝑟𝑎𝑑𝑖𝑎𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
. Assuming Q1 turns on 

when Vzone n is more than 2V, we 
can solve for t and see the width of 

the spike. Be sure your calculator is 

set to radians and not degrees for 

the following calculations. 

2𝑉 = 34𝑉 sin 377𝑡 
2

34
 = 0.06 =  sin 377𝑡 

377𝑡 =  sin−1 0.06 

377𝑡 = .06 

𝑡 = 160 microseconds. 

 

AT t = 0, 𝑉𝑧𝑜𝑛𝑒 𝑛 = 0. At t = 160 microseconds, it is at 

+2V and Q1 turns on.  

 

The 60 Hz sine wave has a period of 16.67 milliseconds. 

This means it goes through half of its cycle in 8.33 

milliseconds. 160 microseconds before 8.33 milliseconds, 
Q1 has turned off. Then 160 microseconds after 8.33 milliseconds Q2 turns on. This 

says I will have both transistors off for about (2 × 160 =) 320 microseconds every 

8.33 milliseconds. With both transistors off, the digital output goes high. So if the 
software sees a logic 1, it just has to wait more than 320 microseconds and take 

another reading to be sure it didn't hit this crossover zone. 

  



R. G. Sparber June 27, 2020 Page 70 of 127 

Appendix 2: EEPROM Map 
The Electrically Erasable Programmable Read-Only Memory (EEPROM) present 

inside the Arduino device will hold two seven member arrays of data.  

 

The first array is ZoneNeverRun. It is initialized to all elements true. As each zone 

is run for the first time and historical flow data collected, that element will be set to 
false. Each element is defined as boolean so takes one byte.  

 

We have: 

 

 ZoneNeverRun[i] with i equal any integer from 0 to 6. It occupies EEPROM at 

memory locations 0 through 6.  
 

To write to this array, we will use the subroutine WriteZoneNeverRun( ). To read 

this array, we will use the subroutine ReadZoneNeverRun( ). 

 

 

The second array is HistoricalFlow[i]. It is not initialized. Instead, we only look at 
a given element when  ZoneNeverRun[i]  says HistoricalFlow[i] has valid data. As 

each zone is successfully run, the measured data is written into this array. Each 

element is defined as float so takes four bytes. 

 

We have: 

 
HistoricalFlow[i] with i equal any integer from 0 to 6. It will occupy EEPROM at 

memory locations 7 through 28. 

 

To write to this array, we will use the subroutine WriteHistoricalFlow( ). To read 

this array, we will use the subroutine ReadHistoricalFlow( ). 

  



R. G. Sparber June 27, 2020 Page 71 of 127 

Appendix 3: Arduino Compilation Error Experiences 
 

It has been a while since I programmed an Arduino so ran into many "newbie" 

problems. The most confusing were the error messages when my code was not in 

the sketch book folder. I saw many errors due to files I just included and even one I 

didn't include. They went away once I moved my code to the sketch book folder. 
  

After working through way too many typos in my program, I ran into two 

compilation errors related to code supplied by Sparkfun and Adafruit.  

 

The first error was  

 
"main.cpp:43 undefined reference to 'setup' 

Collect2.exe: error: ld returned 

1 exit status 

 

A search of the web turned up others with this problem plus a solution that worked 

for them. Going to the file main.cpp line 43 I found 
 

setup( ); 

 

I was instructed to add "void" 

 

void setup( ); 
 

After switching to Administrator mode, I was able to save the change.  

 

The second error was 

 

EEPROM.h:43:30: warning: type qualifiers ignored on function return type [-
Wignored-qualifiers] 

operator const uint8_t( ) const       { return **this; } 

 

I learned that EEPROM.h had two bugs in it. On line 43 was 

 

operator const uint8_t( ) 
 

The expert said to remove "const". 

 



R. G. Sparber June 27, 2020 Page 72 of 127 

I then was instructed to go to line 92 

 
operator const int( ) const 

 

and remove the first "const". The modified file was then saved. The compilation 

was then error free. 

 

  



R. G. Sparber June 27, 2020 Page 73 of 127 

Appendix 4: Anti-flicker 
 

The software is constantly running in a loop. If a given LCD screen is written, it 

will be re-written on each pass. This is both bad and good. It is bad because doing 

many updates each second causes the LCD to flicker annoyingly. However, it is 

good because any corruption of the LCD's displayed data is quickly corrected. The 
trick is to do updates often, but not too often. I have found that an LCD refresh 

every 10 seconds is about right. 

 

The strategy I chose was to maintain a unique name for each LCD screen plus have 

a global flag that presents the opportunity to do an update only every 10 seconds. 

This flag is part of the TimerControl() subroutine. 
 

We  have two types of LCD screens. The simpler one is just text. I can describe it 

with a constant. For example: 

 

const int TryingToClose = 25; 

 
TryingToClose has been assigned an arbitrary but unique value of 25. 

 

I also have screens that display text that doesn't change mixed with numbers that 

do change. In these cases, I assign them an arbitrary but unique value that has the 

changing number added to it. For example, NoZoneOnWithGPMConstant is 

assigned a unique number to represent the No Zone On screen. I generate the 
complete screen name by adding the displayed GPM with the result saved as 

NoZoneOnWithGPMC.  

 

I keep track of the current LCD screen with the variable lcdNowDisplaying. 

 

When the software is about to print a screen, it checks if the new screen differs 
from the old screen or if it is time for an update. If either is true, the LCD screen is 

refreshed. The one exception is when the software has closed the valve and is 

waiting to see if the flow is now near 0. While displaying the "Trying to close 

valve" screen, I block all non-alarm screens. Otherwise, I would get alternating 

screens which is unreadable. 

 
 

  



R. G. Sparber June 27, 2020 Page 74 of 127 

Appendix 5: Test Cases 
The following Cases are designed to fully test the software so are detailed. There 

were developed in parallel with creating the flow charts and thinking about how 

my irrigation runs and fails. 

 

"Start" means all variables have been initialized. This is done by powering off, 
holding down the clear alarms button, powering on, and then releasing the button. 

 

When a zone is first turned on, the software waits 10 seconds for the flow to 

stabilize. It then takes 60 seconds to measure the flow. I am using the built in flow 

simulator which generates half nominal, nominal, and twice nominal flow rates. 

 
In all cases, m does not equal n. 

Non-fault Cases 
1. Start to no zones on for 65 seconds. 
2. Start to zone n on 
3. Zone n on with nominal flow. Zone n off. Zone n on with nominal flow. See 

that nominal flow becomes reference. Turn off power. Hold down Clear all 

alarms button. Power up. See that historical data removed. Zone n on with 
nominal flow and see that ref is - . 

4. Zone n on. Nominal flow for 1.5 minutes. Zone n off. Zone m on. 
Nominal flow for 1.5 minutes. Zone m off. Zone n on for 75 
seconds. Zone n off. Zone m on for 75 seconds. Zone m off.  

5. MultiZone (more than one zone on) 
a.  Before Start have zones n and m on. Start. 
b. Zone n on. Zone m on. Zone m off. 
c.  Zone n on. Zone m on. Zone n off. 

6. No zones on to more than one zone on 
7. No zones on to zone n on for first time with nominal flow. See that ref is - . 
8. No zones on to zone n on not first time. See that ref has nominal after it.  
 

  



R. G. Sparber June 27, 2020 Page 75 of 127 

Fault Cases 
A. Single fault 

1. No zones on and then flow > leakage so go to "Can't stop flow." Major. 

Press Clear All Alarms. 
2. Zone n on with underflow. Then pest. 
3. Zone n on with underflow. Zone m on normal flow. 
4. overflow  

a.  Zone n on with overflow minor .Then pest. Zone n off. Zone n. 
b. Zone n on with overflow minor .Then pest. Zone m on with 

nominal flow for 75 seconds. Zone m off. Zone n on. 
c.  Zone n on with overflow major. Then pest. Zone m on. Zone m 

off. 
B.  Sequential Double fault on same zone 

a.  underflow 
1. Zone n on with underflow. Then pest. Then overflow minor and 

should hear minor audible alarm. Then pest. Then clear all alarms. 
2. Zone n on with underflow. Hear minor. Then pest.  Then overflow 

major. Hear major audible alarm. Then pest. Then clear all alarms. 
3. Zone n in underflow. Hear minor. Then pest. Then zone n off; zone 

m runs normally. 
4. Zone n in underflow. Hear minor. Then pest. Then zone n off; zone 

m goes into underflow. Hear minor. Then pest. 
b. Zone n on with overflow minor. Hear Minor audible alarm. Then pest. 

Then overflow major. Hear major audible alarm. Then pest. 
C. First zone faults and then turns off. Second zone on and faults. 

1. Underflow 
a.  Zone n in underflow and then zone n off; zone m goes into 

overflow minor 
b. Zone n in underflow and then zone n off; zone m goes into 

overflow major 
2. Overflow 

a.  Zone n in overflow minor and then zone n off; zone m runs 

normally 
b. Zone n in overflow minor and then zone n off; zone m goes into 

underflow 
c.  Zone n in overflow minor and then zone n off; zone m goes into 

overflow minor 
d. Zone n in overflow minor and then zone n off; zone m goes into 

overflow Major  



R. G. Sparber June 27, 2020 Page 76 of 127 

e.  Zone n in Overflow Major. Turn off zone n. Turn on zone m 

nominal flow. Wait 1.5 minutes. Zone m off. Should stay in 

Overflow Major. 
3. Interrupted flow measurement 

a.  Zone n on. Flow < 0.7 X nominal. While measuring flow, turn on 

zone m. Then turn zone m off. Zone n should return to start of 

measuring. 
b. Zone n on. Flow = nominal. While measuring, turn on zone m. 

Then turn zone m off. Zone n should return to start of measuring.  
c.  Zone n on. Flow > 1.3 X nominal. While measuring, turn on zone 

m. Then turn zone m off. Zone n should return to start of 

measuring.  
4. Interrupted Inhibit processing 

a.  Zone n on. Flow > 1.3 X nominal. When valve first closed, zone n 

off. Flow = nominal. Zone m on.  
b. Zone n on. Flow > 1.3 X nominal. When valve first closed, Zone m 

on. Zone m off. Zone n should go to Overflow Minor. 
  



R. G. Sparber June 27, 2020 Page 77 of 127 

Appendix 6: The Code 
This code must be in a folder with the same name. If you forget, the Software 

Development Environment will ask you if it is ok to create this folder and put your 

code into it. 

 

Before compiling, the following libraries must be present in the system library: 
 

EEPROM.h 

 LiquidCrystal.h 

Wire.h 

 

The following must be in the user's library 
Adafruit_MCP23017.h 

 

In all cases an associated .c or .cpp file must also be in place. If not, the compiler 

will tell you what is missing. 

 

Use the software development tools to place the header files in the system library. 
The header for the user's library is just placed there.  

 

The driver for the MCP23017 was developed by Adafruit. Please support Adafruit 

by buying your device from them. See https://github.com/adafruit/Adafruit-

MCP23017-Arduino-Library for details. 

 

https://github.com/adafruit/Adafruit-MCP23017-Arduino-Library
https://github.com/adafruit/Adafruit-MCP23017-Arduino-Library


R. G. Sparber June 27, 2020 Page 78 of 127 

///Flow Monitor and Control 

String version = "V1.3";  //put version number here so it ends up on the welcome 
screen 

 

//#define SpeedUp //comment out to set One minute back to 60 seconds. If defined, 

One Minute is 10 seconds 

 

// include the library drivers: 
#include <EEPROM.h> //hardware built into Arduino 

#include <LiquidCrystal.h> 

#include <Wire.h> //supports I2C used by port expander 

#include "Adafruit_MCP23017.h" //supports port expander 

 

//boolean SerialPrintEnable = false; //if true, all diagnostic Serial.prints that are not 
commented out are active 

//Constants and Variables 

 

//MCP23017 port expander inputs 

const int Zone1Pin = 0; 

const int Zone2Pin = 1;  
const int Zone3Pin = 2;  

const int Zone4Pin = 3;  

const int Zone5Pin = 4;  

const int Zone6Pin = 5; 

const int PestAlarmButtonPin = 6; //Pest Alarm button 

const int ClearAlarmButtonPin = 7; //Clear Alarm button 
const int LightSensorPiin = 8;  //Light Sensor  

const int FlowPin = 9; //Flow signal from water meter 

 

//Arduino Outputs 

const int AllZonesOffPin = 0; 

const int AudibleAlarmPin = 4; //Audible Alarm 
const int RS = 5; //name on LCD assigned to D number on Pro Micro 

const int EN = 6; 

const int DB4 = 7; 

const int DB5 = 8; 

const int DB6 = 9; 

const int DB7 = 10; 
const int OnBoardYellowLED = 17; //on board yellow LED pin 

 



R. G. Sparber June 27, 2020 Page 79 of 127 

//States 

const int Active = 0; //when a zone is active, pin will be 0; see also ActiveFlag 
const int Inactive = 1; //when a zone is inactive, pin will be 1 

const int Enable = 0; //when a relay or sound gets power, pin will be 0 

const int Disable = 1; //when a relay or sound has power removed, pin will be 1 

const int Closed = 0; //when AZO must be closed, output a 0 because relay is NC 

const int Open = 1; //to open the AZO contacts, power up relay by outputting a 1 

const int Sound = 1; //turns on piezoelectric beeper 
const int Quiet = 0; //turns piezoelectric beeper off 

const int None = 0; //when ActiveZone = 0, it means there is no active zone 

const int MultiZone = 99; //when ActiveZone = 99, more than one zone is active 

const int All = 6;//total number of zones 

int Zones[7] = {1,1,1,1,1,1,1};//will hold on/off state of all zones but first element 

not used. 0 means active 
int ActiveZone = 0; 

int PreviousZone = 0; 

int NumberActiveZones = 0; 

 

//Timer 

boolean TransientTimerStart = true; //if true, transient timer starts from 0 & clears 
this flag 

boolean TransientTimerRunning = false; //if true, transient timer is running 

boolean OneMinuteTimerStart = false;//if true, One Minute Timer starts from 0 & 

clears this flag 

boolean OneMinuteTimerRunning = false; //if true, One Minute Timer is running 

boolean MinorAlarmPestTimerStart = false;//if true, Minor alarm Pest Timer starts 
from 0 & clears this flag 

boolean MinorAlarmPestTimerRunning = false; //if true, Minor alarm Pest Timer 

is running 

boolean MajorAlarmPestTimerStart = false;//if true, Major alarm Pest Timer starts 

from 0 & clears this flag 

boolean MajorAlarmPestTimerRunning = false; //if true, Major alarm Pest Timer is 
running 

boolean MinorAudibleAlarmCadence = true; //Minor Audible alarm Cadence. 

Toggles between true & false continuously 

boolean MajorAudibleAlarmCadence = true; //Major Audible alarm Cadence. 

Toggles between true & false continuously 

boolean EndOfMinute = false; 
boolean StartOfTransientTimer = false; //used to indicate a zone transition 



R. G. Sparber June 27, 2020 Page 80 of 127 

boolean LastMinuteFlowMeasurementValid = false; //is set true when flow data 

updated and set false when flow data is used to change a state. It is not set false if 
we just print to screen. 

boolean NoTimerRunning = false; //summary flag over both transient and one 

minute timers 

const unsigned long  TransientTimerInterval = 10000; //10000 TransienT Timer 10 

seconds 

 
#ifdef SpeedUp 

const unsigned long  MinorAudibleAlarmPestTimerInterval = 100000; 

const unsigned long  MajorAudibleAlarmPestTimerInterval = 100000;  

#else 

const unsigned long  MinorAudibleAlarmPestTimerInterval = 86400000; //change 

to 10 seconds for testing 86400000 Minor Alarm Pest Timer  24 hrs 
const unsigned long  MajorAudibleAlarmPestTimerInterval = 900000;  //change to 

10 seconds for testing 900000 Major Alarm Pest Timer 15 minutes 

#endif 

 

const unsigned long  MinorAlarmOnTime = 300; //used by cadence function 

const unsigned long  MinorAlarmOffTime = 2000; 
const unsigned long  MajorAlarmOnTime = 100; 

const unsigned long  MajorAlarmOffTime = 100; 

unsigned long  TransientTimerFirstReading = millis(); //Transient Timer 

unsigned long  OneMinuteTimerFirstReading = millis(); //One Minute Timer 

unsigned long  MinorAudibleAlarmPestTimerFirstReading = millis(); //Minor 

Alarm Pest timer 
unsigned long  MajorAudibleAlarmPestTimerFirstReading = millis(); //Major 

Alarm Pest timer 

unsigned long  MinorAudibleAlarmCadenceTimerFirstReading = millis(); //Minor 

Alarm Cadence first reading 

unsigned long  MajorAudibleAlarmCadenceTimerFirstReading = millis(); //Major 

Alarm Cadence first reading 
boolean AntiFlickerWriteOK = true; 

unsigned long AntiFlickerFirstReading = millis(); 

unsigned long AntiFlickerUpdateTime  = 10000;//LCD updates every 10 seconds 

 

 

#ifdef SpeedUp 
const unsigned long OneMinuteTimerInterval = 10000; 

int CountDownSeconds = 20; 



R. G. Sparber June 27, 2020 Page 81 of 127 

const int CountDownFromSeconds = 20;//Transient time plus 10 seconds; used in 

display to tell user when state will change. made an int because I only want 2 digits 
#else 

const unsigned long OneMinuteTimerInterval = 60000; 

int CountDownSeconds = 70; //variable used by Countdown timer that displays on 

screen 

const int CountDownFromSeconds = 70;//Transient time plus 60 seconds; used in 

display to tell user when state will change. made an int because I only want 2 digits 
#endif 

 

//Flow Rate Symbol 

boolean NewTick = false; //signals that Flow changed from high to low during this 

cycle. 

boolean NewTickForTopDisplay = false; //set with NewTick and cleared by top 
display. It is used to control Flow indictator on LCD. 

boolean NewTickForBottomDisplay = false; //set with NewTick and cleared by 

bottom display. It is used to control Flow indictator on LCD. 

 

//Flow Meter 

float FlowTickTime = 0; //used by Flow Meter 
float InstantaneousFlowReading = 0;//used by Flow Meter 

boolean JustMeasureFlow = false;//used by Flow Meter 

float OldMeasureFlowStartTime = millis();//used by Flow Meter 

boolean HighLevel = true; 

boolean LowLevel = false; 

float JustFlowTimer = millis(); //used by Flow Meter 
 

//Flow Level 

boolean FlowState = false; //state of Flow bit 

boolean LastFlowStateHigh = false; //holds flow meter's previous output state 

boolean LastFlowState = false; //holds flow meter's previous output state 

boolean StartCollectFlowAfterInhibit = false; 
boolean CollectFlowAfterInhibit = false; 

const float MinFlowFraction[7] = {0,0.7,0.7,0.7,0.7,0.7,0.7}; //underflow is when 

flow count plus 1 is more than 30% below reference 

const float MaxFlowFraction[7] = {0,1.3,1.3,1.3,1.3,1.3,1.3}; //overflow is when 

flow count minus 1 is more than 30% above reference 

const float LeakagePPM = 2; //must be > 0 or causes software error. Assume 2 
pulses per minute; threshold for flow when all valves off. if the flow is equal to or 



R. G. Sparber June 27, 2020 Page 82 of 127 

greater than this threshold, I flag Major Alarm. A leakage of 0.06 GPM is 87 

gallons per day! At least display will show it although not alarm 
float LastMinuteFlowPPM = 0; 

float LastMinuteFlowGPM = 0; 

float FlowCountPulse = 0; 

float FlowRatePPM = 0; 

float TotalFlowCount  = 0; //running total of flow count while a zone is active 

float TotalRunTime = 0; //running total of minutes zone is active after transient 
time 

float HistoricalDataPPM; //used when writing to EEPROM 

const float GallonsPerPulse = 0.0280 ;//based on measurements with city meter. 

 

//Input states 

const boolean Day = true; //when light sensor output is true, it means daytime 
because detector pulls up to Vcc 

const boolean ActiveFlag = false; //when a zone is active, debounced read will 

return false in response to seeing 0. See also Active which is an const integer and 

equals 0 

const boolean Pushed = false; //used by debouncedRead() of buttons 

const boolean Released = true; //used by debouncedRead() of buttons 
 

//Faults 

boolean Fault = false; //fault summary flag 

boolean MajorAlarm = false; 

boolean AllAlarmsCleared = false;//set when CAB pushed and cleared when 

display shows action. 
boolean MinorAlarm[7] = {false, false, false, false, false, false, false}; //this lets 

me handle multiple Minor alarms at same time although only first one is display 

and available to clear. Pest blocks all of them. 

boolean ZoneUnderflow[7] = {false, false, false, false, false, false, false}; 

boolean ZoneOverflow[7] = {false, false, false, false, false, false, false}; 

boolean Inhibit[7] = {false, false, false, false, false, false, false}; //when true, it 
requests that zone power be removed from the active zone. ZonePower() makes the 

change 

boolean PESTrescindRequest = false;//if Judge Flow Rate() sees an escalation of 

alarm state, it requests that Alarm Control() rescind all PESTs 

boolean RelayMayBeOnSoDontLook = false; //if Alarm Control sees a manual 

clear alarm, we must blind Get Zone States until relay releases 
boolean SuspectRelay = false;//if the normally closed contacts on the relay are 

open when the relay is off, we will get all zones on 



R. G. Sparber June 27, 2020 Page 83 of 127 

boolean StuckRelay = false; //if, after cycling relay many times, it is still open, call 

it a hardware failure 
boolean TriedToUnstickRelay = false; //set true after trying and to false if it 

worked or via clear all alarms 

boolean RequestOverflowMinorAlarmOnPreviousZone = false;//set by 

ZoneTransitionQ() and cleared by Alarm Control 

 

//Errors 
boolean EEPROM_ReadZoneNeverRunRangeError = false; 

boolean EEPROM_WriteZoneNeverRun_RangeError = false; 

boolean EEPROM_ReadHistoricalFlow_RangeError = false; 

boolean EEPROM_WriteHistoricalFlow_RangeError = false; 

 

//LCD flicker reduction screen names 
const int TryingToClose = 25; 

const int NoZoneOnNoDataYet = 26; 

const int ZoneButNoDataYet = 27; 

const int MutiZoneDisplayed = 28; 

int lcdNowDisplaying = 0;//what was last written to LCD 

const int NoZoneOnWithPPMConstant = 1000; //add PPM value to get name of 
this screen 

const int ZoneOnWithPPMConstant = 2000; //add PPM value to get name of this 

screen 

const int lcdUnderflowPlusZoneConstant = 3000; //add PPM value to get name of 

this screen 

const int lcdOverflowPlusZoneConstant = 4000; //add PPM value to get name of 
this screen 

int NoZoneOnWithPPM = 0; //complete name includes constant plus PPM 

int ZoneOnWithPPM = 0; //complete name includes constant plus PPM 

int lcdUnderflowPlusZone = 0; //complete name includes constant plus PPM 

int lcdOverflowPlusZone = 0; //complete name includes constant plus PPM 

 
//Scratch and index 

long DiagCurrentTime = 0; //scratch variable 

long DiagStartTime = 0; //scratch variable 

int i = 0; //index used in while loops 

float HistoricalGPM;//used in displaying historical flow data 

int HaveMinorIndex = 0; 
 

//Diagnostic 



R. G. Sparber June 27, 2020 Page 84 of 127 

boolean DiagOn = false; //set true to enable all instances of the Diag() tool 

const int Pause = 1; //used by Diag() 
const int Wait = 2; //used by Diag() 

int qaz = 999; //local scratch used to calculate Diag data 

 

//Built in Flow Simulator 

boolean FastestFlow = false; //used in Flow Simulator 

boolean NominalFlow = false; //used in Flow Simulator 
boolean LowestFlow = false; //used in Flow Simulator  

const int FlowSimulatorDivider = 1;//used by the Flow Simulator to generate rates 

of 0.5, 1, and 1.5  

int FlowSimulatorCount = 0; //used by the Flow Simulator to generate rates of 0.5, 

1, and 1.5 

 
//Hardware Initialization 

Adafruit_MCP23017 mcp; //port expander that ties to Pro Micro via I2C 

LiquidCrystal lcd(RS, EN, DB4, DB5, DB6, DB7); 

 

void setup(){ 

lcd.begin(16, 2);    // set up the LCD's number of columns and rows 
 

//define each output on Arduino  

pinMode(AllZonesOffPin, OUTPUT); //0 turns off relay and makes connection 

pinMode(AudibleAlarmPin, OUTPUT); //1 turn on audible alarm through an NPN 

pinMode(OnBoardYellowLED, OUTPUT);  //on board LED for debug 

digitalWrite(OnBoardYellowLED, HIGH); //turns off on board yellow LED 
 

//Port Expander: define each input with pull ups 

mcp.begin(); //using default address of 0 

mcp.pinMode(0,INPUT); //define port 0 as an input 

mcp.pullUp(0,HIGH); //enables 100K pull up on input 

mcp.pinMode(1,INPUT); 
mcp.pullUp(1,HIGH); 

mcp.pinMode(2,INPUT); 

mcp.pullUp(2,HIGH); 

mcp.pinMode(3,INPUT); 

mcp.pullUp(3,HIGH); 

mcp.pinMode(4,INPUT); 
mcp.pullUp(4,HIGH); 

mcp.pinMode(5,INPUT); 



R. G. Sparber June 27, 2020 Page 85 of 127 

mcp.pullUp(5,HIGH); 

mcp.pinMode(6,INPUT); //PAB 
mcp.pullUp(6,HIGH);  

mcp.pinMode(7,INPUT); //CAB 

mcp.pullUp(7,HIGH); 

mcp.pinMode(8,INPUT); //Light Sensor 

//I do not want the pull up resistor for the light sensor. 

mcp.pinMode(9,INPUT); //Flow 
mcp.pullUp(9,HIGH); 

 

//used by Flow simulator 

mcp.pinMode(10,OUTPUT); 

mcp.pinMode(11,OUTPUT); 

mcp.pinMode(12,OUTPUT); 
 

/* 

mcp.digitalRead(n)) returns the state of virtual pin #n. 

Signal  Virtual Pin# 

Zone 1   0 

Zone 2   1 
Zone 3   2 

Zone 4   3 

Zone 5   4 

Zone 6   5 

PAB      6  (Pest Audible Alarm Button) 

CAB      7  (Clear All Alarms Button) 
LS    8     (Light Sensor) 

Flow     9 

spare    10-15 

   

 

EEPROM memory map 
addresses       used by      init value meaning  

    0-6    ZoneNeverRun flag array  1    true 

    7-34    historical flow data array    n/a    

*/ 

 

//Note that the user can push either button 
//Initialize EEPROM if clear alarms button is held down at power up.     



R. G. Sparber June 27, 2020 Page 86 of 127 

if (debouncedRead(ClearAlarmButtonPin) == Pushed){ //clear EEPROM and tells 

user 
     i=0; 

  while(i<7){ 

  EEPROM.write(i,1); 

   i = i+1; 

   } 

  lcd.clear();   
  lcd.print (F("Historical")); 

  lcd.setCursor(0,1); //print next line on second row 

  lcd.print (F("data cleared."));     

  } 

WaitUntilClearButtonReleased: 

if (debouncedRead(ClearAlarmButtonPin) == Pushed) goto 
WaitUntilClearButtonReleased;   

 

//Enable Flow Meter if Pest button was held down at power up. Default is 

FlowMeter() off 

if (debouncedRead(PestAlarmButtonPin) == Pushed){ 

     JustMeasureFlow = true; 
     lcd.print (F("Will just")); 

     lcd.setCursor(0,1); //print next line on second row 

     lcd.print (F("measure flow."));    

    } 

WaitUntilPestButtonReleased: 

if (debouncedRead(PestAlarmButtonPin) == Pushed) goto 
WaitUntilPestButtonReleased;     

 

Serial.begin(9600); //This pipes text to the PC's //Serial monitor 

 

//Welcome screen at power up 

lcd.clear(); 
lcd.print(F("Flow Monitor"));//the F() function prevents alphanumeric string from 

be stored in scratch memory 

lcd.setCursor(0,1); //print next line on second row 

lcd.print (F("& Control ")); 

lcd.print (version); 

delay(3000); 
 

OldMeasureFlowStartTime = millis();//set starting time. Used by flow meter mode 



R. G. Sparber June 27, 2020 Page 87 of 127 

digitalWrite(AudibleAlarmPin, Quiet);   //initialize Audible Alarm to off which is 

low 
}//**End of setup() 

 

void loop(){ //TOL 

JustMeasureFlowQ(); //if user just wants to measure flow, we do not return. Cancel 

option with power cycle 

  Simulator(); //generate test Flow pulses on each pass through the loop. Selectable 
via jumper plugs on board 

  SecondaryFlowScan();//runs often to catch narrow Flow pulses 

GetZoneStates(); //returns Previous Zone and Active Zone 

  SecondaryFlowScan();//runs often to catch narrow Flow pulses 

ZonePower(); //responds to Inhibit[] and controls zone power 

  SecondaryFlowScan();//runs often to catch narrow Flow pulses 
TimerControl(); //all timers turned on and run from here 

  SecondaryFlowScan();//runs often to catch narrow Flow pulses 

ZoneTransitionQ(); //Zone Transition? If so, prepare for it 

  SecondaryFlowScan();//runs often to catch narrow Flow pulses      

ProcessFlowInfo(); // gets flow rate, displays it, and judges if flow rate is OK 

  SecondaryFlowScan();//runs often to catch narrow Flow pulses 
RelayErrorControl();//if relay contacts fail, try to clean them   

AlarmControl();//display fault details, accept manual clear of alarms, accept 

pesting of active alarms, and generate audible alarms as necessary 

} 

//end of loop() 

 
void GetZoneStates(){ 

/* GZS 

Inputs: zone control lines, ActiveZone from last pass through loop, 

RelayMayBeOnSoDontLook 

Outputs: PreviousZone and new ActiveZone 

*/ 
PreviousZone = ActiveZone; //save last zone state before recording new one 

InitializeZone(); //set all of Zones[] to Inactive which means ones 

 

//if Alarm Control was instructed to clear all alarms and related flags 

//plus release relay, it can't be done until Zone Power so just don't look at zones 

this time. Pass 
//back no zones on. 

 



R. G. Sparber June 27, 2020 Page 88 of 127 

if (RelayMayBeOnSoDontLook == true){ 

goto FAZ; 
}  

PopulateZones(); //read zone pins and fill the Zones[] array 

FAZ: 

FindActiveZone(); //returns ActiveZone 

} 

//End of GetZoneStates() 
 

 

void ZonePower(){ //ZP() 

/* 

Input: Inhibit[] 

Output: control of All Zones Off relay 
*/ 

 

if (Inhibit[ActiveZone] == true) {     

     digitalWrite(AllZonesOffPin, Open);//turn All Zones Off by operating the relay 

  }else{ 

//otherwise, ActiveZone should not be inhibited so insure it by write 
digitalWrite(AllZonesOffPin, Closed);//let any zone be on by releasing the relay 

(remove power from it) 

  } 

if (RelayMayBeOnSoDontLook == true){ //I must wait after releasing the relay so 

//GetZoneStates() doesn't see multizone due to floating COMMON OUT  

delay(200);//wait 200 mS for relay to release but only in this special case 
RelayMayBeOnSoDontLook = false; //clear flag because all is back to normal now 

} 

   return; 

} 

//** End of ZonePower() 

 
void TimerControl(){ //TC() 

/* 

if valve power removed  due to Under or Over flow detected, wait 10 seconds for 

Inhibit's effect on flow to stabilize.  

*/  

if ((ActiveZone != PreviousZone)&&(ActiveZone != MultiZone)){ 
  TransientTimerStart = true; //so we have a zone transition to a single zone state or 

just set Inhibit on a zone so start transient timer 



R. G. Sparber June 27, 2020 Page 89 of 127 

  DiagStartTime = millis();//reset starting time to when TT starts. Then 10 sec for 

TT followed by 1  
  } 

if(StartCollectFlowAfterInhibit == true){ 

  StartCollectFlowAfterInhibit = false; 

  TransientTimerStart = true; 

  DiagStartTime = millis();//reset starting time to when TT starts. Then 10 sec for 

TT followed by 1 minute timer 
  } 

 

TransientTimeElapseTimer();//Transient Timer 

//if transient timer was just started or is running and the one minute timer was just 

about to start or is running, we must Early Terminate the one minute timer 

 
if((TransientTimerRunning == true)|| (TransientTimerStart == true)){ 

  OneMinuteTimerStart = false; 

  OneMinuteTimerRunning = false; 

  } 

/*TT starts out running. When TT done, start OM timer unless we are in 

MultiZone. 
 */ 

if ((TransientTimerRunning == false) && (OneMinuteTimerRunning == false) 

&& (ActiveZone != MultiZone))OneMinuteTimerStart = true; 

OneMinuteElapseTimer();//One Minute Timer 

MinorPestElapseTimer();//Minor alarm Pest Timer 

MajorPestElapseTimer();//Major alarm Pest Timer 
MinorCadence();//Minor Alarm Cadence generator toggles 

MinorAudibleAlarmCadence flag true/false 

MajorCadence();//Major Alarm Cadence generator toggles 

MajorAudibleAlarmCadence flag true/false 

AntiFlickerCadence(); //sets the AntiFlickerWriteOK flag true every 

AntiFlickerUpdateTime seconds 
}      

//**End of TimerControl 

 

void ZoneTransitionQ(){//Zone Transition?  ZT() 

if (ActiveZone != PreviousZone){//if true, we have a zone transition 

     TestingNewInhibitInterruptedQ();//if inhibit was active but subsequent flow 
measurement interrupted by zone change, ask for minor alarm on previous zone 

     SaveOldZoneFlowMeasurement(); //only does save if collected data valid 



R. G. Sparber June 27, 2020 Page 90 of 127 

     PrepareForNewZone(); //initilizes variables 

     CollectFlowAfterInhibit = false;//if zone transition was during measurement 
right after Inhibit invoked, we need to clean up flags 

     LastMinuteFlowMeasurementValid = false; 

      

  } 

if (TransientTimerRunning == true){ //this signals a zone has been inhibited and 

we must measure the resulting flow so reset flow variables 
  PrepareForNewZone(); //initilizes variables used to count flow 

} 

} 

//End of ZoneTransitionQ() 

 

 
void GetFlowRate(){ 

//one minute and running counts are done here 

/* GFR() 

Inputs: timers, Zones() 

Outputs: if FlowMeasurementValid is true, LastMinuteFlowPPM is valid. Clear 

this flag when data is part of a decision that comes out positive to prevent double 
counting it. Flow rate while zone active is TotalFlowCount/TotalRunTime 

*/ 

if ((ZoneOverflow[ActiveZone] == true) && (MinorAlarm[ActiveZone] == 

true)){//if we are in overflow and minor alarm has been set, stop collecting flow 

data after inhibit because we are done 

CollectFlowAfterInhibit = false; //clearing this flag lets Display Fault Details show 
Overflow 

} 

FlowState = debouncedRead(FlowPin); //single read of Flow bit which is used here 

and to update LCD flow symbols 

digitalWrite(OnBoardYellowLED, FlowState);//echo Flow state to on board 

yellow LED 
if((TransientTimerStart == true) || (TransientTimerRunning == true)) return; //flow 

not stable so don't measure it 

if (OneMinuteTimerRunning == true){//within one minute flow sampling interval 

if ((LastFlowStateHigh == true) && (FlowState == false)){     

  LastFlowStateHigh = false; //record that Flow is now low 

  FlowCountPulse = FlowCountPulse + 1;//then Flow went from high to low so 
count it 

  FlowTickTime = millis(); //record time falling edge occurred 



R. G. Sparber June 27, 2020 Page 91 of 127 

  NewTick = true; //set flag that a new falling edge has arrived on Flow 

  NewTickForTopDisplay = true; //used for top status display to show Flow activity 
  NewTickForBottomDisplay = true; //used for bottom status display to show Flow 

activity 

  goto EndOfMinuteQ; 

      } 

    if ((LastFlowStateHigh == false) && (FlowState == true)){ 

      LastFlowStateHigh = true; //record that Flow is now high 
      goto EndOfMinuteQ; 

      } 

     //Flow didn't change state     

      } 

EndOfMinuteQ: 

if (EndOfMinute == true){ //one minute just ended so calc flow       
   LastMinuteFlowPPM = FlowCountPulse; 

   LastMinuteFlowMeasurementValid = true;//used by Process Flow Info() and set 

false after it is used to make a state change other than an LCD print    

   TotalFlowCount = FlowCountPulse + TotalFlowCount;//running total while zone 

active  

   TotalRunTime = TotalRunTime + 1;//running total while zone active 
   FlowCountPulse = 0;//clear count for next 1 minute interval 

   }  

return; 

} 

//**End of GetFlowRate() 

 
void SecondaryFlowScan(){ 

//this runs multiple times in the loop to catch Flow pulses that are too narrow to be 

caught 

//if scanned once per cycle. Program cycle is approx 60 ms and min pulse est at 

around 5 ms. 

/* SRS() 
Inputs: timers, Zones() 

Outputs: just update flow count 

*/ 

FlowState = debouncedRead(FlowPin);//do single read of Flow and then process it 

plus I use it to toggle LCD flow status symbols 

digitalWrite(OnBoardYellowLED,FlowState);//echo Flow state to on board yellow 
LED 

 



R. G. Sparber June 27, 2020 Page 92 of 127 

if((TransientTimerStart == true) || (TransientTimerRunning == true)) return; //flow 

not stable so don't measure it 
 

if (OneMinuteTimerRunning == true){//within one minute flow sampling interval 

 

  if ((LastFlowStateHigh == true) && (FlowState == false)){       

    LastFlowStateHigh = false; //record that Flow is now low 

    FlowCountPulse = FlowCountPulse + 1;//then Flow went from high to low so 
count it 

    FlowTickTime = millis(); //record time falling edge occurred 

    NewTick = true; //set flag that a new falling edge has arrived on Flow 

    NewTickForTopDisplay = true; 

    NewTickForBottomDisplay = true; 

    } 
  if ((LastFlowStateHigh == false) && (FlowState == true)){ 

       

    LastFlowStateHigh = true; //record that Flow is now high 

    } 

     //Flow didn't change state     

  } 
return; 

} 

// ** End of SecondaryFlowScan() 

 

 

void DisplayFlowRate(){ //DFR() 
//display the flow rate. Note that this is only sunny day. Rainy day displays done in 

Alarm Control()  

LastMinuteFlowGPM = LastMinuteFlowPPM*GallonsPerPulse; 

if (SuspectRelay == true)return; //block all non fault messages if relay contacts 

seem to be faulted 

if (MoreThanOne() == true)return; 
if (PossibleFault() == true)return;//if we have a fault or have just invoked Inhibit, 

we don't want alarm message erased by nonfault flow info 

if (NoZoneOnAndNoDataYet() == true)return; 

if (NoZoneOnWithData() == true)return; 

if (ActiveZoneNoDataYet() == true)return; 

if (ZoneActive() == true)return; 
} 

//** End of DisplayFlowRate() 



R. G. Sparber June 27, 2020 Page 93 of 127 

 

 
void JudgeFlowRate(){ //JFR() 

/* 

Inputs: LastMinuteFlowPPM and flow references 

Outputs: MinorAlarm[ActiveZone], Major Alarm, Fault flag. 

ZoneUnderflow(ActiveZone), ZoneOverflow(ActiveZone). Major Alarm is not 

tied to any zone. Fault is tied to current ActiveZone 
 

Judge Flow Rate looks at LastMinuteFlowPPM only if 

LastMinuteFlowMeasurementValid is true to determine if in spec. Once 

LastMinuteFlowPPM is used to make a state change  

(not just to print to LCD), LastMinuteFlowMeasurementValid is set to false so I 

don't use the reading again. If LastMinuteFlowPPM is not within range, it sets  
Inhibit[ActiveZone] to true. On the next pass through, it evaluates the flow to see if 

the inhibit worked. 

*/ 

if(MajorAlarm == true)return; //Once we reach Major Alarm, no flow judging is 

done. 

if(MultiZoneQ == true) return; 
if (NoFlowDataQ() == true)return; 

if(NoHistoryQ() == true)return; 

if(SmallFlowQ() == true)return;//if flow is small, include uncertainty of readings to 

determine if normal or Overflow. Return if normal or overflow set. 

if(UnderflowQ() == true)return; 

if(OverflowBeforeInhibitQ() == true)return; 
if(ImmediatelyAfterInhibitFaultQ() == true)return;//if Inhibit was just invoked and 

first flow data taken, set Minor Alarm if it held. If it didn't hold, set Major Alarm.  

if (AfterInhibitStableFaultQ() == true)return;// if true, Inhibit not holding anymore, 

we have Overflow Major 

if(LeakageNoZonesActiveQ() == true)return; 

/* 
To get here, flow must be within normal range. Note that once a zone has been 

inhibited, it can only be cleared manually. Otherwise, I would  

have to turn on the suspect zone periodically and see if the problem 

still there. Since manual intervention needed to fix the problem, 

makes sense to just make alarm clear manual. 

*/ 
} 

//**End of JudgeFlowRate() 



R. G. Sparber June 27, 2020 Page 94 of 127 

 

 
void TransientTimeElapseTimer(){//** TTE() 

    if (ActiveZone == MultiZone){ //stop TT timer if MultiZone active 

      DiagStartTime = millis();//reset starting time to when TT starts. Then 10 sec 

for TT followed by 1 

      TransientTimerStart = false; 

      TransientTimerRunning = false;       
      return; 

      } 

    NoTimerRunning =((TransientTimerStart == false) && 

(TransientTimerRunning == false) && (OneMinuteTimerStart == false) && 

(OneMinuteTimerRunning == false));     

    if ((PreviousZone == MultiZone) && (NoTimerRunning == true)){ 
     TransientTimerStart = true; //while in MultiZone, all timers were stopped but 

now that we have left, start the TT 

     DiagStartTime = millis();//reset starting time to when TT starts. Then 10 sec for 

TT followed by 1 

    }      

    if (TransientTimerStart == true){ 
      LastMinuteFlowMeasurementValid = false; //will be true after first minute 

passes and the first Flow data has been generated 

      StartOfTransientTimer = true;//used to indicate a zone transition NOT USED 

      TransientTimerStart = false; 

      DiagStartTime = millis();//reset starting time to when TT starts. Then 10 sec 

for TT followed by 1 
      TransientTimerFirstReading = millis(); 

      TransientTimerRunning = true; 

      CountDownSeconds = CountDownFromSeconds; //since this is the start of 

transient interval, initialize countdown       

      return; 

    } 
  //When TT done, clear TransientTimerRunning flag 

  if (TransientTimerRunning == true){ 

    CountDownSeconds = CountDownFromSeconds - (millis() - 

TransientTimerFirstReading)/1000; //start at CountDownFrom and count down to 

60. Then OM takes over 

    if ((millis() - TransientTimerFirstReading) >= TransientTimerInterval){ //so 
transient interval is over 

      TransientTimerRunning = false; 



R. G. Sparber June 27, 2020 Page 95 of 127 

      CountDownSeconds = OneMinuteTimerInterval/1000; // count down during 

transient is done so prepare for one minute count down 
      return; 

      } 

  } 

} 

//** end of TransientTimeElapseTimer() 

 
void OneMinuteElapseTimer(){//**one minute timer OME() 

if (ActiveZone == MultiZone){//stop OM timer if MultiZone active    

  OneMinuteTimerStart = false; 

  OneMinuteTimerRunning = false; 

  EndOfMinute = false;       

  return; 
  } 

if (OneMinuteTimerStart == true){ 

  EndOfMinute = false; 

  OneMinuteTimerStart = false; 

  OneMinuteTimerFirstReading = millis(); 

  OneMinuteTimerRunning = true; 
  CountDownSeconds = OneMinuteTimerInterval/1000; 

  return; 

  } 

     

if (OneMinuteTimerRunning == true){ 

  CountDownSeconds = OneMinuteTimerInterval/1000. - (millis() - 
OneMinuteTimerFirstReading)/1000; //CountDown timer used on screen when 

flow being displayed. 

  if ((millis() - OneMinuteTimerFirstReading) >= OneMinuteTimerInterval){ //if 

timer done 

    OneMinuteTimerRunning = false; 

    EndOfMinute = true; 
    return; 

    }    

} 

} 

//**end of OneMinuteElapseTimer() 

 
void MinorPestElapseTimer(){//**Minor alarm Pest Timer  MIPE() 

if (MinorAlarmPestTimerStart == true){ 



R. G. Sparber June 27, 2020 Page 96 of 127 

  digitalWrite(AudibleAlarmPin, Quiet);   //turns sound off 

  MinorAlarmPestTimerStart = false; 
  MinorAudibleAlarmPestTimerFirstReading = millis(); 

  MinorAlarmPestTimerRunning = true; 

  return; 

  } 

if ((MinorAlarmPestTimerRunning == true) && ((millis() - 

MinorAudibleAlarmPestTimerFirstReading) >= 
MinorAudibleAlarmPestTimerInterval))MinorAlarmPestTimerRunning = false; 

return; 

} 

//**end of MinorPestElapseTimer() 

 

 
void MajorPestElapseTimer(){//**Major alarm Pest Timer  MAPE() 

if (MajorAlarmPestTimerStart == true){ 

  digitalWrite(AudibleAlarmPin, Quiet);   // be sure sound is off 

  MajorAlarmPestTimerStart = false; 

  MajorAudibleAlarmPestTimerFirstReading = millis(); 

  MajorAlarmPestTimerRunning = true; 
  return; 

  } 

if ((MajorAlarmPestTimerRunning == true) && ((millis() - 

MajorAudibleAlarmPestTimerFirstReading) >= 

MajorAudibleAlarmPestTimerInterval))MajorAlarmPestTimerRunning = false; 

return; 
} 

//**end of MajorPestElapseTimer() 

 

 

void MinorCadence(){ //**Minor Cadence Timer Subroutine MiC() 

if (MinorAudibleAlarmCadence == true){ 
  if ((millis() - MinorAudibleAlarmCadenceTimerFirstReading) < 

MinorAlarmOnTime)return; 

  MinorAudibleAlarmCadence = false; //change timer from true to false 

  MinorAudibleAlarmCadenceTimerFirstReading = millis();//reset timer for use by 

MIACC being false 

  }else{ 
  if ((millis() - MinorAudibleAlarmCadenceTimerFirstReading) < 

MinorAlarmOffTime)return; 



R. G. Sparber June 27, 2020 Page 97 of 127 

  MinorAudibleAlarmCadence = true; //change timer from false to true 

  MinorAudibleAlarmCadenceTimerFirstReading = millis();//reset timer for use by 
MIACC being true 

  } 

return; 

}    

//**End of MinorCadence() 

 
 

void MajorCadence(){ //**Major Cadence Timer Subroutine 

  if (MajorAudibleAlarmCadence == true){ 

     if ((millis() - MajorAudibleAlarmCadenceTimerFirstReading) < 

MajorAlarmOnTime)return; 

     MajorAudibleAlarmCadence = false; //change timer from true to false 
     MajorAudibleAlarmCadenceTimerFirstReading = millis(); //reset timer for use 

by MAACC being false 

      

     AntiFlickerWriteOK = true;//UNRELATED TO ALARM CADENCE: once 

every MajorAlarmOnTime interval we will update the LCD to reduce flicker 

      
  }else{ 

     if ((millis() - MajorAudibleAlarmCadenceTimerFirstReading) < 

MajorAlarmOffTime)return; 

     MajorAudibleAlarmCadence = true;//change timer from false to true 

     MajorAudibleAlarmCadenceTimerFirstReading = millis();//reset timer for use 

by MAACC being true 
  }     

return; 

}    

//**End of MajorCadence() 

 

void AntiFlickerCadence(){ //generates a flag that is set true every 
AntiFlickerUpdateTime seconds. It is cleared when any screen is updated 

if ((millis() - AntiFlickerFirstReading) < AntiFlickerUpdateTime)return;//if not 

time to set AntiFlickerWriteOK flag, just return 

AntiFlickerWriteOK = true; //time to set the flag true 

AntiFlickerFirstReading = millis(); //reset timer for use by AntiFlickerWriteOK 

being set true       
return; 

}    



R. G. Sparber June 27, 2020 Page 98 of 127 

//**End of AntiFlickerCadence() 

 
void ProcessFlowInfo(){ //flow is in pulses per minutes except when being 

displayed 

GetFlowRate(); 

DisplayFlowRate(); 

JudgeFlowRate(); 

} 
//** End of ProcessFlowInfo() 

     

void AlarmControl(){ //** AC() 

/* 

Inputs: alarm states, Inhibit(), pushbuttons  

Outputs: audible alarms, LCD display text, cleared error arrays 
*/ 

CleanUpPrematureAlarmExit();//if zone change occurred during flow 

measurement immediately after Inhibit true, force MinorAlarm on the zone as best 

guess   

DisplayFaultDetails(); //if there is a software fault, stop the program; otherwise 

display and return 
ManuallyClearAlarmQ(); 

PestActiveAlarmQ(); 

AudibleAlarmProcessing();  

}     

//**End of AlarmControl() 

 
void SaveOldZoneFlowMeasurement(){ //SOZFM() 

//only save historical flow data that is not from faulted zone or Multizone and is 

from at least one minute of measuring flow 

 

if ((TotalRunTime == 0) || (Inhibit[PreviousZone] == true) || 

(MinorAlarm[PreviousZone] == true) || (MajorAlarm == true) || (PreviousZone == 
MultiZone))return;  

//no save if past flow data not valid. However, when CAB pushed, all of these are 

cleared so should cause return.  

//otherwise, save the past flow data 

HistoricalDataPPM = TotalFlowCount/TotalRunTime; //the new historical data in 

PPM is the average rate over the full time the zone was just running 
WriteHistoricalFlow(PreviousZone, HistoricalDataPPM);  

WriteZoneNeverRun(PreviousZone, false); //this zone's historical data is now valid 



R. G. Sparber June 27, 2020 Page 99 of 127 

} 

//end of SaveOldZoneFlowMeasurement()     
 

 

void PrepareForNewZone(){ //PFNZ() 

FlowCountPulse = 0;//initialize since new zone active 

TotalFlowCount = 0;//initialize since new zone active 

TotalRunTime = 0;//initialize since new zone active 
} 

//end of PrepareForNewZone()  

  

void InitializeZone(){ //IZ() 

/* 

Inputs: none 
Outputs: Zones[]  

Desc: sets all elements of Zones[] to Inactive 

*/ 

i=0; 

while(i<7){ 

  Zones[i]=Inactive; 
  i=i+1; 

  } 

} 

//**End of InitializeZone() 

 

 
void PopulateZones(){ //read zone pins and fill the Zones() array 

//if COM disconnected but one zone active, all zones will appear active 

if (debouncedRead(Zone1Pin) == ActiveFlag)Zones[1] = Active; 

if (debouncedRead(Zone2Pin) == ActiveFlag)Zones[2] = Active; 

if (debouncedRead(Zone3Pin) == ActiveFlag)Zones[3] = Active; 

if (debouncedRead(Zone4Pin) == ActiveFlag)Zones[4] = Active; 
if (debouncedRead(Zone5Pin) == ActiveFlag)Zones[5] = Active; 

if (debouncedRead(Zone6Pin) == ActiveFlag)Zones[6] = Active; 

} 

//**End of PopulateZones() 

 

 
void FindActiveZone(){ 

i = 1; 



R. G. Sparber June 27, 2020 Page 100 of 127 

NumberActiveZones = 0;//initialize count of active zones 

while(i<7){ //count number of active zones 
  if (Zones[i] == Active)NumberActiveZones = NumberActiveZones + 1; 

  i=i+1; 

  }   

if (NumberActiveZones == 0){//no zones are active 

//with no zones active, we can't tell if relay not stuck so if SusprectRelay was true, 

leave it there 
  ActiveZone = None;      

  return; 

  } 

if (NumberActiveZones == 1){//identify the one active zone 

SuspectRelay = false;//with only 1 active zone, relay can't be stuck 

  i = 1; 
  while(i<7){ 

    if (Zones[i] == Active){ 

      ActiveZone = i;    

      return; //found the active zone so stop looking 

    } 

    i=i+1; 
  } 

} 

//otherwise, more than 1 zone is active or relay is active 

//if Inhibit is active, COM has been disconnected and the ActiveZone backfeeds 

the zones that are off 

//to cause them all to look active. Therefore, just return so the previous ActiveZone 
value persists. 

if (Inhibit[ActiveZone] == true){ 

return; 

}  

//if all zones are active but Inhibit not true, it is likely that the relay contacts have 

oxides on them which prevents them closing when the relay is released 
if (NumberActiveZones == All){ 

SuspectRelay = true; //relay contacts may not have closed but also call it 

MultiZone 

} 

//Since Inhibit not active, assume NumberActiveZones > 1 due to user action so 

have Multizone 
ActiveZone = MultiZone; 

return; 



R. G. Sparber June 27, 2020 Page 101 of 127 

} 

//** End of FindActiveZone() 
 

void DisplayFaultDetails(){//DFD() 

if (RelayErrorQ()==true) return; 

if(CABpressed()==true)return; 

if (SoftwareError() == true)return; 

if(CannotStop() == true)return; 
if (Trying() == true)return; 

if(HaveMinor() == true)return; 

} 

//** end of DisplayFaultDetails() 

   

 
void ManuallyClearAlarmQ(){//manually clear alarm?    

if (debouncedRead(ClearAlarmButtonPin) == Pushed){ 

//clears Major or all Minor alarms; put all flags back to init state except a few 

     AllAlarmsCleared = true; //used to control display managed by Alarm Control() 

     TransientTimerStart = true;//start timing sequence the same as a zone change 

     TransientTimerRunning = false; 
     TotalRunTime = 0; //this prevents bad flow data from being saved in historical 

     OneMinuteTimerStart = false; 

     OneMinuteTimerRunning = false; 

     MinorAlarmPestTimerStart = false; 

     MajorAlarmPestTimerStart = false; 

     EndOfMinute = false; 
     StartOfTransientTimer = false; 

     LastMinuteFlowMeasurementValid = false;  

     NoTimerRunning = false; 

     FlowState = false; 

     EEPROM_ReadZoneNeverRunRangeError = false; 

     EEPROM_WriteZoneNeverRun_RangeError = false; 
     EEPROM_ReadHistoricalFlow_RangeError = false; 

     EEPROM_WriteHistoricalFlow_RangeError = false; 

     SuspectRelay = false; 

     CollectFlowAfterInhibit = false;//Inhibit[] cleared below but must also clear this 

flag 

     StartCollectFlowAfterInhibit = false;    
     MajorAlarm = false; 

     Fault = false; 



R. G. Sparber June 27, 2020 Page 102 of 127 

     MajorAlarmPestTimerRunning = false; //in case Major Pest timer running, turn 

it off 
     i = 0; 

     while(i<7){ 

       MinorAlarm[i] = false; 

       Inhibit[i] = false; 

       RelayMayBeOnSoDontLook = true; //tells Get Zone States to not look because 

if relay is operated it will see multizone 
       ZoneUnderflow[i] = false; 

       ZoneOverflow[i] = false; 

       MinorAlarmPestTimerRunning = false; //in case Minor Pest timer running, 

turn it off 

       i=i+1; 

      } 
    //this is a violation of the architecture because it is a display function not done in 

a display subroutine. Must do it here because we stay in a tight loop until CAB 

released and need positive feedback to user. 

    lcd.clear(); 

    lcd.print (F("Cleared")); 

    lcd.setCursor(0,1); //print starting at col 0 row 1 
    lcd.print (F("all alarms.")); 

WaitForClearButtonRelease: 

if (debouncedRead(ClearAlarmButtonPin) == Pushed)goto 

WaitForClearButtonRelease; //user will hear audible alarm go away so wait until 

they let go of clear button 

    lcd.clear(); 
} 

} //end of ManuallyClearAlarmQ() 

  

  

void PestActiveAlarmQ(){ 

if(PESTrescindRequest == true){ 
//Judge Flow Rate() has requested that Major and Minor Alarm PEST be rescinded 

because new alarm has arrived   

MinorAlarmPestTimerStart = false;//stops Minor alarm Pest Timer 

MinorAlarmPestTimerRunning = false; //stops Minor alarm Pest Timer 

MajorAlarmPestTimerStart = false;//stops Major alarm Pest Timer 

MajorAlarmPestTimerRunning = false; //stops Major alarm Pest Timer 
PESTrescindRequest = false;//clear rescind flag 

return; 



R. G. Sparber June 27, 2020 Page 103 of 127 

} 

if (debouncedRead(PestAlarmButtonPin) == Pushed){ 
lcd.clear();//after pesting alarms, acknowledge button pushed 

lcd.print (F("Silenced")); 

lcd.setCursor(0,1); //print starting at col 0 row 1 

lcd.print (F("audible alarms.")); 

 //pest any audible alarms 

  if(MajorAlarm == true){ 
    MajorAlarmPestTimerStart = true; //starts the Major Alarm Pest timer 

    } 

  //if any zone has MinorAlarm, start Minor Alarm Pest timer       

  i = 1; 

    while(i<7){ 

      if (MinorAlarm[i] == true){ 
        MinorAlarmPestTimerStart = true; //start the Minor alarm pest timer 

        goto WaitForPestButtonRelease; 

        } 

      i=i+1; 

      } 

WaitForPestButtonRelease: 
if (debouncedRead(PestAlarmButtonPin) == Released){ 

  lcd.clear(); 

  return; 

  }else{ 

  goto WaitForPestButtonRelease; //user will stop hearing audible alarm when they 

let go of Pest button 
  } 

} 

} 

// end of PestActiveAlarmQ() 

 

 
void AudibleAlarmProcessing(){ 

if(MajorAlarmPestTimerRunning == true)return; //Major audible alarm Pested so 

just leave audible alarm generation       

if (MajorAlarm == true){ 

     if(MajorAudibleAlarmCadence == true){ //if cadence says time to beep, do it   

       digitalWrite(AudibleAlarmPin, Sound);   //turn on sound 
      }else{ 

       digitalWrite(AudibleAlarmPin, Quiet);   //turns sound off 



R. G. Sparber June 27, 2020 Page 104 of 127 

      } 

     return; //by leaving audible alarm generation now, we prevent having both a 
Major and Minor alarm at the same time. Only the Major will sound.       

  } 

 

//there is no Major Alarm but there might be a Minor 

if (MinorAlarmsActiveQ() == false){//no Minor Alarms so be sure piezo is quiet 

and return 
    digitalWrite(AudibleAlarmPin, Quiet);   

    return;  

  }//otherwise we have a Minor Alarm 

if(MinorAlarmPestTimerRunning == true){ //Minor audible alarm Pested so return  

    digitalWrite(AudibleAlarmPin, Quiet);   

    return;  
  }//have at least one Minor Alarm that is not pested 

if (debouncedRead(LightSensorPiin) == Day){  

//it is daytime so sound it    

     if(MinorAudibleAlarmCadence == true){ //if cadence says time to beep, do it 

        digitalWrite(AudibleAlarmPin, Sound);     

      }else{ 
        digitalWrite(AudibleAlarmPin, Quiet);   //turns sound off 

      } 

  }else{  

  digitalWrite(AudibleAlarmPin, Quiet); //be sure audible alarm is off at night 

  } 

  return; // then it is night so do not sound Minor audible alarm even if active   
} 

// **end of AudibleAlarmProcessing() 

 

 

boolean ReadZoneNeverRun(byte zone){ 

/* 
EEPROM memory map 

addresses       used by      init value meaning  

    0-6    ZoneNeverRun flag array  1    true 

    7-34    historical flow data array    n/a    

*/ 

boolean flag; 
if (zone > 6){ 

  EEPROM_ReadZoneNeverRunRangeError = true; 



R. G. Sparber June 27, 2020 Page 105 of 127 

  return true; 

  } 
if (zone == None) return false; //since we use Leakage limit for No zones on, we 

always have historical data so can say it has always run before 

flag = EEPROM.read(zone); 

return flag; 

} //end of ReadZoneNeverRun() 

 
 

void WriteZoneNeverRun(int zone, boolean data){ 

/* 

EEPROM memory map 

addresses       used by      init value meaning  

    0-6    ZoneNeverRun flag array  1    true 
    7-34    historical flow data array    n/a    

*/ 

if (zone > 6){ 

     EEPROM_WriteZoneNeverRun_RangeError = true; 

     return; 

  } 
if (zone == None) return;//no need to write because we use Leakage as historical so 

it is as if we have always previously run for this case 

EEPROM.write(zone, data); 

} //end of WriteZoneNeverRun() 

 

 
float ReadHistoricalFlowPPM(int zone){ 

/* 

EEPROM memory map 

addresses       used by      init value meaning  

    0-6    ZoneNeverRun flag array  1    true 

    7-34    historical flow data array    n/a    
*/ 

int address; 

float data; 

if (zone == None)return LeakagePPM;//when no zones on, we use Leakage as our 

historical 

if (zone > 6){ 
     EEPROM_ReadHistoricalFlow_RangeError = true; 

     return 0; 



R. G. Sparber June 27, 2020 Page 106 of 127 

  } 

address = (zone * 4) + 7; //points to lowest byte in float variable 
EEPROM.get(address,data); 

return data; 

} //end of ReadHistoricalFlow 

 

 

void WriteHistoricalFlow(int zone,float data){ 
/* 

EEPROM memory map 

addresses       used by      init value meaning  

    0-6    ZoneNeverRun flag array  1    true 

    7-34    historical flow data array    n/a    

*/ 
int address; 

if (zone == None) return; //nothing to write because we use Leakage 

if (zone > 6){ 

     EEPROM_WriteHistoricalFlow_RangeError = true; 

     return; 

  } 
address = (zone * 4) + 7; 

EEPROM.put(address,data); 

} //end of WriteHistoricalFlow 

 

 

void SoftwareFaultBeep(){ //0.1 second on and 10 seconds off 
SFB: 

digitalWrite(AudibleAlarmPin, Sound); 

delay (100); 

digitalWrite(AudibleAlarmPin, Quiet); 

delay (10000); 

goto SFB; 
} // end of SoftwareFaultBeep 

 

 

void Diag(int marker, int data, int control){ //diagnostic tool; control can be Pause 

or Wait. Pause is for 5 seconds. Wait is until Pest pushed and released   

 
if (DiagOn == false) return; //default is all instances of this diagnostic tool off. 

Turn them on by holding down only the Pest button at power up. 



R. G. Sparber June 27, 2020 Page 107 of 127 

/* 

Inputs:  
marker - identify of this instance of Diag() 

data - an integer to be displayed 

control - what to do when data is displayed 

    * Pause - delay 3 seconds and then return  

    * Wait - wait until the Pest button is pushed and then return 

*/ 
delay (3000); //give time for last LCD message to be seen. 

lcd.clear(); 

lcd.print (F("ID ")); 

lcd.print(marker); 

lcd.setCursor(0,1); //print starting at col 0 row 1 

lcd.print (F("Data ")); 
lcd.print (data); 

 

if (control == Pause){ 

  delay(3000); //wait 3 seconds 

  lcd.clear(); //clean up display 

  return; 
    } 

 

if (control == Wait){ 

ScanPestButton: 

if(debouncedRead(PestAlarmButtonPin) == Pushed){ 

  //clean up display; next wait for Pest to be pushed and then wait for it to be 
released 

  lcd.clear(); //when Pest is pushed, clear the display 

  if (debouncedRead(PestAlarmButtonPin) != Pushed)return; //when Pest is then 

released, return 

  } 

  goto ScanPestButton; //keep scanning for Pest to be pushed and released 
} 

//control is not Pause or Wait so tell user they didn't specify a valid Control type, 

wait 5 seconds, clean up, and return   

lcd.clear();   

lcd.print (F("ID ")); 

lcd.print(marker); 
lcd.setCursor(0,1); //print next line on second row 

lcd.print (F("Control?")); //was Control 



R. G. Sparber June 27, 2020 Page 108 of 127 

delay(5000); //wait 5 seconds 

lcd.clear();     
return;  

} // **end of Diag() 

 

 

boolean MinorAlarmsActiveQ(){ //return true if we have at least one Minor 

Alarms 
if(StuckRelay == true)return true;//a stuck relay is a minor alarm 

i = 1; 

while(i<7){ 

  if(MinorAlarm[i] == true)return true; 

  i=i+1; 

  } 
return false; //no Minor Alarms exist 

} // end of MinorAlarmsActiveQ 

 

 

//Debounced Read of an input on the MCP23017 

boolean debouncedRead(int Pin){//this is the only place a local variable is used and 
passed back as the value of a subroutine 

float debounce = 0; 

float reading; 

i = 0; 

while (i<10){//read pin 10 times and take average rounded to nearest int 

  //note that read is from port expander and not from Arduino pin 
  reading = float(mcp.digitalRead(Pin)); 

  debounce = reading + debounce; 

  i = i+1; 

  } 

debounce = round((debounce/10));//take average and round to nearest integer but 

debounce is still float 
if (debounce <= 0.5)return false; 

// fall through to signal must be > 0.5 so true 

return true; 

} 

//**End of port expander Debounced Read. 

 
void PrintStatusTop(){//puts day/night, flow activity, and countdown timer in top 

right corner 



R. G. Sparber June 27, 2020 Page 109 of 127 

lcd.setCursor(12,0); //column, row 

if (debouncedRead(LightSensorPiin) == Day){ 
  if((MajorAlarmPestTimerRunning  == false)&&(MinorAlarmPestTimerRunning 

== false)){ 

  lcd.print (F("D"));//daytime with no active pests 

  }else{ 

  lcd.print (F("d"));//daytime with an active pest 

  } 
  }else{//is night 

  if(MajorAlarmPestTimerRunning  == false){ 

  lcd.print (F("N"));//nighttime with no active pests 

  }else{ 

  lcd.print (F("n"));//nighttime with an active pest   

  } 
  } 

if (TransientTimerRunning == true){//we are in the transient interval so ignoring 

flow 

  lcd.print (F("T")); 

}else{//we are measuring flow for 1 minute so show flow activity   

  if (NewTickForTopDisplay == true){ //when a falling edge detected on this cycle, 
show a "]".  

    lcd.print (F("]")); 

    NewTickForTopDisplay = false; //clear Flow edge flag in preparation for next 

falling edge 

    }else{ //when there has not been a falling edge, show a "[". 

    lcd.print(F("[")); 
    } 

    } 

if(CountDownSeconds < 10)lcd.print(F(" ")); //going from 2 digits to 1 digit so 

shift count over 1 space 

lcd.print(CountDownSeconds); 

} 
//** end of PrintStatusTop() 

 

 

void PrintStatusBottom(){//puts countdown timer in bottom right corner along with 

flow indicator. It does not show day/night or pest status. 

lcd.setCursor(13,1); //so 3 character positions left on second line 
if (TransientTimerRunning == true){//we are in the transient interval so ignoring 

flow 



R. G. Sparber June 27, 2020 Page 110 of 127 

  lcd.print (F("T")); 

}else{//we are measuring flow for 1 minute so show flow activity   
if (NewTickForBottomDisplay == true){ //when a falling edge detected on this 

cycle, show a "]".  

  lcd.print (F("]")); 

  NewTickForBottomDisplay = false; 

  }else{ //when there has not been a falling edge, show a "[". 

  lcd.print (F("[")); 
  } 

  } 

if(CountDownSeconds < 10)lcd.print(F(" "));//going from 2 digits to 1 digit so 

shift count over 1 space 

lcd.print (CountDownSeconds); 

} 
//**end of PrintStatusBottom()   

 

   

//Flow Simulator executes on each pass of the loop but only increments its count 

every "FlowSimulatorDivider" times. 

void Simulator(){ 
if (FlowSimulatorCount < 1){ 

  FlowSimulatorCount = FlowSimulatorDivider;//reset the count 

  //ripple counter to divide down fastest rate     

  if (FastestFlow == false){//it toggles each time we have count down to 0 

    //FastestFlow falling edge 

    FastestFlow = true; 
    mcp.digitalWrite(12,HIGH); 

    if (NominalFlow == false){ //each time the fastest flow rises, toggle the nominal 

rate 

      //Nominal Flow rising edge 

      NominalFlow = true; 

      mcp.digitalWrite(11,HIGH); 
      if (LowestFlow == false){ 

        LowestFlow = true; 

        mcp.digitalWrite(10,HIGH); 

        //digitalWrite(OnBoardYellowLED, HIGH); //drive yellow LED on the board 

too 

        }else{ 
        LowestFlow = false; 

        mcp.digitalWrite(10,LOW); 



R. G. Sparber June 27, 2020 Page 111 of 127 

        //digitalWrite(OnBoardYellowLED, LOW);//drive yellow LED on the board 

too 
        } 

      }else{ 

      NominalFlow = false; 

      mcp.digitalWrite(11,LOW); 

      } 

    }else{ 
    FastestFlow = false; 

    mcp.digitalWrite(12,LOW); 

    } 

  } 

 -- FlowSimulatorCount; //decrement Flow Simulator Counter 

} 
//end of Simulator() 

 

void PrintLastMinuteFlowGPM(){ //does rounding based on size of number so it 

fits into 4 character positions 

    if (LastMinuteFlowGPM >= 10.) {// xx.x 

        lcd.print (LastMinuteFlowGPM,1); //print looks at the variable and sees it is a 
float so rounds to 1 place 

        } 

    if (LastMinuteFlowGPM < 10.){//x.xx or 0.xx 

        lcd.print (LastMinuteFlowGPM,2);//print looks at the variable and sees it is a 

float so rounds to 2 place 

        } 
} 

 

boolean MultiZoneQ(){ 

if (ActiveZone == MultiZone){//don't judge flow if in Multi Zone 

  return true; 

  }else{ 
  return false; 

  } 

} 

 

 

boolean NoFlowDataQ(){//see if we have no flow data yet for what appears to be a 
healthy ActiveZone.  

if ((TotalRunTime == 0) && (Inhibit[ActiveZone] == false)){//Assume no fault.  



R. G. Sparber June 27, 2020 Page 112 of 127 

return true; //We have no historical flow data to use as reference. No zone active 

has Leakage limit so can proceed. Assume no fault. 
}else{ 

return false; 

} 

}  

 

boolean NoHistoryQ(){//see if we have no historical flow data to use as reference. 
No zone active has Leakage limit so can proceed.  

if (ReadZoneNeverRun(ActiveZone) == true){//Assume no fault. 

  return true;  

  }else{ 

  return false; 

  } 
} 

 

boolean ImmediatelyAfterInhibitFaultQ(){ 

 

if((CollectFlowAfterInhibit == false) || (LastMinuteFlowMeasurementValid == 

false))return false; //if we are not waiting for flow data 
//right after Inhibit enabled or new measured data not available yet, return false.      

//zone has just been inhibited and data good, see if flow has been controlled 

  LastMinuteFlowMeasurementValid = false;//we are about to use 

LastMinuteFlowPPM so it is no longer valid.  

  //we know flow isn't right because Inhibit just invoked but do not know the new 

alarm state yet. Therefore 
  //leave old alarm state in place along with state of PEST  

  Fault = true;//since we do know a new alarm state will be found soon, set fault 

summary flag true 

  CollectFlowAfterInhibit = false; //finally can retire this flag because collected 

data after inhibit was used to set an alarm. Data's value now used up 

  PESTrescindRequest = true; //we are reaching a new alarm state so be sure PEST 
rescinded  

  ZoneOverflow[ActiveZone] = true;//since Inhibit was set active, we know 

Overflow exists. Must next determine if Minor or Major 

  if(LastMinuteFlowPPM < LeakagePPM){ 

    //inhibit did work so we have just arrived at Overflow Minor Alarm 

    MinorAlarm[ActiveZone] = true;  
   }else{//the LastMinuteFlowPPM >= LeakagePPM //inhibit did not work so we 

have just arrived at Overflow Major Alarm 



R. G. Sparber June 27, 2020 Page 113 of 127 

  MajorAlarm = true; //zone inhibited and it did not work so Overflow Major 

Alarm  
  } 

  return true; //return true because an alarm always results from Inhibit first going 

active 

} 

// ** End of ImmediatelyAfterInhibitFaultQ() 

 
 

boolean AfterInhibitStableFaultQ(){ 

if((Inhibit[ActiveZone] == false) || (CollectFlowAfterInhibit == true) || 

(LastMinuteFlowMeasurementValid == false))return false; 

//We are already at Overflow Minor. Monitor flow to be sure blocked flow persists.  

if(LastMinuteFlowPPM >= LeakagePPM){  
  //inhibit was working but has now failed so we have moved from Overflow Minor 

to Overflow Major Alarm 

  //I will be coming back here when Inhibit true in the minor alarm case. We just 

escalated to major. 

  MinorAlarm[ActiveZone] = false; //we keep fault type at Overflow but retire 

Minor. 
  MajorAlarm = true; //set new alarm level 

  PESTrescindRequest = true; //we are changing alarms so be sure PEST rescinded     

  return true; //have new alarm state 

  }else{ //LastMinuteFlowPPM is < LeakagePPM so are holding at Overflow 

Minor 

  return false; //no new alarm state 
  } 

} 

// ** End of AfterInhibitStableFaultQ() 

 

 

 
boolean SmallFlowQ(){//if small flow, guard against 0/0 and do best to determine 

if normal or overflow 

//note that historical flow, i.e, ref, is an average so can be fractional. Flow is a 

count so is an integer 

if((ZoneUnderflow[ActiveZone] == true) || (ZoneOverflow[ActiveZone] == true) || 

(LastMinuteFlowMeasurementValid == false))return false;//no valid data to 
evaluate 

if(ReadHistoricalFlowPPM(ActiveZone) < 1.43){ 



R. G. Sparber June 27, 2020 Page 114 of 127 

//given a ref of less than 1.43, can't have underflow. (flow+1)/ref = 0.7 so at flow 

of 0, ref = 1.43 
if (LastMinuteFlowPPM <= 3){ //0, 1, 2, or 3 is normal flow 

goto CallItNormal; 

}else{ //4 or higher is overflow. (flow-1)/ref = 1.3 so at ref of 1.43, flow = 2.86. 

Therefore, 3 +/- 1 is overflow 

goto CallItOverflow; 

} 
}else{ 

return false; //there was no small flow so can use the regular logic to determine 

underflow, normal, and overflow 

} 

CallItNormal: 

LastMinuteFlowMeasurementValid = false;//I used 
LastMinuteFlowMeasurementValid to make a state change so has now been used 

up  

return true; 

CallItOverflow: 

PESTrescindRequest = true;//we are about to arrived at a new alarm state so 

request that any PESTed audible alarms be rescinded   
ZoneOverflow[ActiveZone] = true;//have Overflow so next try Inhibit() and go 

around loop again. 

ZoneUnderflow[ActiveZone] = false;//if we were in Underflow, retire that flag 

since we just went to Overflow 

Inhibit[ActiveZone] = true; 

CollectFlowAfterInhibit = true; 
LastMinuteFlowMeasurementValid = false;//I used 

LastMinuteFlowMeasurementValid to make a state change so has now been used 

up 

StartCollectFlowAfterInhibit = true; //tells Timer Control() to set 

TransientTimerStart true and that starts new flow measurement. It then clears this 

flag so we don't continuously restart TT.   
//Fault summary flag not set yet because we don't know if Minor or Major 

return true; 

} 

 

boolean UnderflowQ(){       

if (ActiveZone == None){ 
  return false; //there can't be underflow when no zones active 

  } 



R. G. Sparber June 27, 2020 Page 115 of 127 

if ((Inhibit[ActiveZone] == false) && (ZoneOverflow[ActiveZone] == false) 

&&(LastMinuteFlowMeasurementValid == true) &&((LastMinuteFlowPPM + 
1)/ReadHistoricalFlowPPM(ActiveZone)) < MinFlowFraction[ActiveZone]){  

//we have Underflow.  

  MinorAlarm[ActiveZone] = true; //no retesting of flow needed so just declare 

Minor Alarm 

  Fault = true; // no retesting of flow needed so just declare Fault    

  ZoneUnderflow[ActiveZone] = true; //set Underflow flag for this zone 
  LastMinuteFlowMeasurementValid = false;//we used LastMinuteFlowPPM so it 

is no longer valid 

  return true; 

  }else{ 

  return false; 

  } 
} 

 

boolean LeakageNoZonesActiveQ(){ 

//all flow measurements are +/- 1 pulse. When LastMinuteFlowPPM is only a few 

pulses per minute, +/- 1 pulse is a large percentage.  

//Therefore I will decrease LastMinuteFlowPPM by 1 for Overflow  
//see if we have excessive flow when no zones are active 

if ((ActiveZone == None) && (LastMinuteFlowPPM > LeakagePPM)){//if flow is 

greater than leakage, set Major Alarm now because Inhibit won't help 

  PESTrescindRequest = true;//we are about to arrived at a new alarm state so 

request that any PESTed audible alarms be rescinded 

  MajorAlarm = true;//a Major alarm takes priority over Minor alarms so no need to 
deal with state of any Minor alarms 

  Fault = true; //fault summary flag set     

  return true; 

  }else{ 

  return false; 

  } 
} 

 

boolean OverflowBeforeInhibitQ(){ 

//see if we have Overflow before Inhibit when a zone is running 

if ((Inhibit[ActiveZone] == false) && (LastMinuteFlowMeasurementValid == 

true) &&((LastMinuteFlowPPM - 1)/ReadHistoricalFlowPPM(ActiveZone)) > 
MaxFlowFraction[ActiveZone]){ 

//have Overflow so try to Inhibit             



R. G. Sparber June 27, 2020 Page 116 of 127 

  Inhibit[ActiveZone] = true; 

  ZoneUnderflow[ActiveZone] = false;//in case we came from Underflow, retire 
this alarm to make way for new alarm 

  MinorAlarm[ActiveZone] = false;//retire the current alarm since we are about to 

determine a new one after affects of inhibit are known. 

  CollectFlowAfterInhibit = true; 

  LastMinuteFlowMeasurementValid = false;//I used 

LastMinuteFlowMeasurementValid to make a state change so has now been used 
up 

  StartCollectFlowAfterInhibit = true; //tells Timer Control() to set 

TransientTimerStart true and that starts new flow measurement. It then clears this 

flag so we don't continuously restart TT.   

  //Fault summary flag not set yet because we don't know if Minor or Major 

  return true;   
  }else{ 

  return false; 

  } 

}   

  

boolean NoZoneOnAndNoDataYet(){ 
if ((TotalRunTime < 1) && (ActiveZone == None)){ //if we do not have one full 

minute of data yet for the No zones on case 

  if ((lcdNowDisplaying != NoZoneOnNoDataYet) || (AntiFlickerWriteOK == 

true)){ //if update to LCD isn't needed, just update status and return.  

  AntiFlickerWriteOK = false; //clear flag that lets us update screen every few 

seconds to reduce flicker 
  lcdNowDisplaying = NoZoneOnNoDataYet; //used to prevent flicker 

  lcd.clear(); 

  lcd.print (F("No zone on.")); 

  PrintStatusTop();  

  lcd.setCursor(0,1); //print next line on second row 

  lcd.print (F("No data yet.")); 
    }else{  

    PrintStatusTop(); //just update one minute countdown in top right corner on each 

cycle 

    } 

return true; 

}else{ 
return false; 

} 



R. G. Sparber June 27, 2020 Page 117 of 127 

} 

 
boolean NoZoneOnWithData(){ 

if ((TotalRunTime >= 1) && (ActiveZone == None)){//if we have at least one full 

minute of data for the No zones on case, print this screen 

  if ((lcdNowDisplaying != NoZoneOnWithPPM) || (AntiFlickerWriteOK == 

true)){ //if this is a new screen or it is time for a refresh 

    AntiFlickerWriteOK = false; //clear flag that lets us update screens 
    NoZoneOnWithPPM = NoZoneOnWithPPMConstant + 

LastMinuteFlowPPM;//the constant means "No zone on." and 

LastMinuteFlowPPM is rest of display screen. Update every few seconds to reduce 

flicker     

    lcdNowDisplaying = NoZoneOnWithPPM; 

    lcd.clear();  
    lcd.print (F("No zone on.")); 

    PrintStatusTop();   

    lcd.setCursor(0,1); //print next line on second row. column, row counting from 0 

    PrintLastMinuteFlowGPM(); //does rounding based on size of number so it fits 

into 4 character positions 

    lcd.setCursor(4,1); //leave 4 characters for LastMinuteFlowGPM which includes 
decimal point  

    lcd.print (F(" GPM;ref"));//leave 4 characters for historical data including 

decimal point 

    HistoricalGPM =LeakagePPM*GallonsPerPulse;//when no zone on, we check 

measured flow against leakage 

    lcd.print(HistoricalGPM,2);//the variable is rounded to 2 places           
    }else{//this is an old screen that does not need full refresh    

    PrintStatusTop(); //just update one minute countdown in top right corner. 

    } 

    return true; 

    }else{ 

    return false; 
    } 

  } 

   

boolean ActiveZoneNoDataYet(){   

if((TotalRunTime < 1) && (ActiveZone > 0) && (ActiveZone < 7)){ 

  PrintStatusTop(); //places one minute countdown in top right corner  
  if ((lcdNowDisplaying != ZoneButNoDataYet) || (AntiFlickerWriteOK == true)){ 

//if update to LCD isn't needed, just return.  



R. G. Sparber June 27, 2020 Page 118 of 127 

    AntiFlickerWriteOK = false; //clear flag that lets us update screen every few 

seconds to reduce flicker 
    lcdNowDisplaying = ZoneButNoDataYet; //used to prevent flicker  lcd.clear();   

    lcd.clear(); 

    lcd.print (F("Zone ")); 

    lcd.print(ActiveZone); 

    PrintStatusTop();      

    lcd.setCursor(0,1); //print next line on second row 
    lcd.print (F("No data yet.")); 

  } 

  return true; 

  }else{ 

  return false; 

  } 
} 

 

boolean ZoneActive(){ 

//we only get here if all other possible screens don't apply    

if ((LastMinuteFlowMeasurementValid == true) && (ActiveZone > 0) && 

(ActiveZone < 7)){  
  //I check to see that flow data is valid but since I'm just updating the LCD, do not 

set LastMinuteFlowMeasurementValid false   

  //if any other screen written, lcdNowDisplaying will not equal ZoneOnWithPPM 

so will write it now  

  if ((lcdNowDisplaying != ZoneOnWithPPM) || (AntiFlickerWriteOK == true)){ 

//if new display or time for update, print new screen 
  AntiFlickerWriteOK = false; //clear flag that lets us update screen every few 

seconds to reduce flicker  

  ZoneOnWithPPM = ZoneOnWithPPMConstant + LastMinuteFlowPPM;//the 

constant means "zone on." and LastMinuteFlowPPM is rest of screen name which 

completely represents what is on the LCD 

  lcdNowDisplaying = ZoneOnWithPPM; //update variable that says what is on the 
LCD now 

  //refresh the screen   

  lcd.clear();   

  lcd.print (F("Zone ")); 

  lcd.print (ActiveZone); 

  PrintStatusTop(); 
  lcd.setCursor(0,1); //print next line on second row 

  PrintLastMinuteFlowGPM();//xx.x or x.xx 



R. G. Sparber June 27, 2020 Page 119 of 127 

  lcd.setCursor(4,1); //leave 3 characters for LastMinuteFlowGPM which includes 

decimal point  
  lcd.print (F(" GPM;ref")); 

  if (ReadZoneNeverRun(ActiveZone) == true){ 

    lcd.print (F("-")); 

    }else{ 

    HistoricalGPM = ReadHistoricalFlowPPM(ActiveZone)*GallonsPerPulse;//put 

historical flow data next to measured data 
    lcd.print (HistoricalGPM); 

    } 

  } 

return true;  

}else{ 

PrintStatusTop(); //places one minute countdown in top right corner even though 
rest of screen not updated 

return false; 

} 

}   

 

boolean MoreThanOne(){  
if (ActiveZone == MultiZone){ 

  if ((lcdNowDisplaying != MutiZoneDisplayed) || (AntiFlickerWriteOK == true)){ 

//if new display or time for update, print new screen  

    AntiFlickerWriteOK = false; //clear flag that lets us update screen every few 

seconds to reduce flicker    

    lcdNowDisplaying = MutiZoneDisplayed;    
    lcd.clear();   

    lcd.print(F("More than one")); 

    lcd.setCursor(0,1); //print next line on second row 

    lcd.print (F("zone active.")); 

    } 

  return true; 
  }else{ 

  return false; 

  } 

  } 

   

boolean PossibleFault(){ 
if ((Fault == true) || (CollectFlowAfterInhibit == true)){ 



R. G. Sparber June 27, 2020 Page 120 of 127 

  return true; //if we have a fault or have just invoked Inhibit, we don't want alarm 

message erased by nonfault flow info 
  }else{ 

  return false; 

  } 

} 

 

boolean CABpressed(){ 
//if CAB pressed, display fact. 

if (AllAlarmsCleared == true){//one time display so no flicker problem 

  lcd.clear();   

  lcd.print (F("All alarms")); 

  lcd.setCursor(0,1);  

  lcd.print (F("were cleared.")); 
  delay(5000); //needed a little bit longer to see it. I didn't do clear so message will 

stay up until new message and avoid blank screen. 

  AllAlarmsCleared = false; //clear flag since this is its only use 

  return true;   

  }else{ 

  return false; 
  } 

} 

 

boolean SoftwareError(){   

//if any software errors, display and stop 

if(EEPROM_ReadZoneNeverRunRangeError == true){//one time display so no 
flicker problem 

  lcd.clear();   

  lcd.print (F("EEPROM read")); 

  lcd.setCursor(0,1); //print next line on second row 

  lcd.print (F("range error.")); 

  SoftwareFaultBeep(); //0.1 second on and 10 seconds off and never come back 
  return true; 

  } 

   

if(EEPROM_WriteZoneNeverRun_RangeError == true){//one time display so no 

flicker problem 

  lcd.clear();   
  lcd.print (F("EEPROM write")); 

  lcd.setCursor(0,1); //print next line on second row 



R. G. Sparber June 27, 2020 Page 121 of 127 

  lcd.print (F("range error.")); 

  SoftwareFaultBeep(); //0.1 second on and 10 seconds off and never come back 
  return true; 

  } 

   

if(EEPROM_ReadHistoricalFlow_RangeError == true){//one time display so no 

flicker problem 

  lcd.clear();   
  lcd.print (F("Historical read")); 

  lcd.setCursor(0,1); //print next line on second row 

  lcd.print (F("range error.")); 

  SoftwareFaultBeep(); //0.1 second on and 10 seconds off and never come back 

  return true; 

  } 
   

if(EEPROM_WriteHistoricalFlow_RangeError == true){//one time display so no 

flicker problem 

  lcd.clear();   

  lcd.print (F("Historical write")); 

  lcd.setCursor(0,1); //print next line on second row 
  lcd.print (F("range error")); 

  SoftwareFaultBeep(); //0.1 second on and 10 seconds off and never come back 

  return true; 

  } 

  return false; 

} 
 

boolean CannotStop(){ 

if (MajorAlarm == true){//one time display so no flicker problem 

  lcd.clear();   

  lcd.print (F("Can't stop"));     

  PrintStatusTop(); 
  lcd.setCursor(0,1); //print first column second row 

  if (ActiveZone == None){ 

    lcd.print (F("idle flow.  ")); 

    PrintLastMinuteFlowGPM(); 

    }else{ 

    lcd.print (F("Zone ")); 
    lcd.print(ActiveZone); 

    lcd.print (F(".     ")); 



R. G. Sparber June 27, 2020 Page 122 of 127 

    PrintLastMinuteFlowGPM(); 

    } 
  return true;  

  }else{    

  return false; 

  } 

} 

 
boolean Trying(){ 

if(CollectFlowAfterInhibit == true){ //only true while flow is being collected 

immediately after Inhibit set so this message will show for 60 seconds  

//and does supersede all other error messages 

  if ((lcdNowDisplaying != TryingToClose) || (AntiFlickerWriteOK == true)){ //if 

this is the first time this screen has printed or if it is time for a refresh, print screen 
  AntiFlickerWriteOK = false; //clear flag that lets us update screen every few 

seconds to reduce flicker 

  lcdNowDisplaying = TryingToClose; //update what is now displayed   

  lcd.clear(); 

  lcd.print (F("Valve off."));   

  lcd.setCursor(0,1); //print next line on second row 
  lcd.print (F("Measuring flow.")); 

  PrintStatusTop(); //updates only on full screen update 

  }else{ 

  PrintStatusTop(); //just update status 

  } 

return true; 
}else{ 

return false; 

} 

} 

 

 
boolean HaveMinor(){ 

//display first zone with Minor Alarm but Overflow checked before Underflow. 

Clear alarm will remove all minor alarms. 

HaveMinorIndex = 1; 

while(HaveMinorIndex<7){ 

if (MinorAlarm[HaveMinorIndex] == true){ 
  if (ZoneOverflow[HaveMinorIndex] == true){       



R. G. Sparber June 27, 2020 Page 123 of 127 

    //for overflow Minor Alarm, the flow has been stopped so we do not display 

flow rate. 
      if ((lcdNowDisplaying != lcdOverflowPlusZone) || (AntiFlickerWriteOK == 

true)){ 

      AntiFlickerWriteOK = false; //clear flag since screen about to be updated 

      lcdOverflowPlusZone = lcdOverflowPlusZoneConstant + HaveMinorIndex; 

      lcdNowDisplaying = lcdOverflowPlusZone; //update screen variable to reflect 

LCD         
      lcd.clear(); 

      lcd.print (F("Overflow"));   

      PrintStatusTop(); 

      lcd.setCursor(0,1); //print next line on second row 

      lcd.print (F("in Zone ")); 

      lcd.print(HaveMinorIndex); 
      lcd.print (F(".  ")); 

      PrintLastMinuteFlowGPM();       

      return true; 

      }else{         

      PrintStatusTop(); 

      return true; 
      } 

    } 

    if (ZoneUnderflow[HaveMinorIndex] == true){//for underflow there is still flow 

so we will display it      

      if((lcdNowDisplaying != lcdUnderflowPlusZone) || (AntiFlickerWriteOK == 

true)){ //if new screen or time to refresh it             
        AntiFlickerWriteOK = false; //clear flag since screen about to be updated 

        lcdUnderflowPlusZone =  lcdUnderflowPlusZoneConstant + 

HaveMinorIndex; 

        lcdNowDisplaying = lcdUnderflowPlusZone; 

        lcd.clear(); 

        lcd.print (F("Underflow Zone ")); 
        lcd.print(HaveMinorIndex); 

        lcd.setCursor(0,1); //print next line on second row starting at first column 

        if (HaveMinorIndex == ActiveZone){//if faulted zone is active, display flow 

information 

          PrintLastMinuteFlowGPM();//xx.x or x.xx 

          //note that if zone was in underflow and then goes into overflow, I won't 
change alarm but will show higher flow  



R. G. Sparber June 27, 2020 Page 124 of 127 

          lcd.setCursor(4,1); //leave 4 characters for LastMinuteFlowGPM which 

includes decimal point  
          lcd.print (F(" GPM;ref")); 

          HistoricalGPM = 

ReadHistoricalFlowPPM(HaveMinorIndex)*GallonsPerPulse;//put historical flow 

data next to measured data 

          lcd.print (HistoricalGPM); 

          }else{//faulted zone is not currently active 
          lcd.print(F("but not active.")); 

          } 

        } 

        return true; 

      }   

    } 
  HaveMinorIndex=HaveMinorIndex+1; 

  } 

return false; 

} 

// ** End of HaveMinor() 

 
 

void RelayErrorControl(){ 

if((SuspectRelay == false) && (TriedToUnstickRelay == false)) return; //no fault 

present 

if((SuspectRelay == false) && (TriedToUnstickRelay == true)){ 

TriedToUnstickRelay = false;//unstick worked for leave fault state 
Fault = false; //clear Fault flag so system can get back to looking for irrigation 

faults 

StuckRelay = false; 

return; 

} 

if((SuspectRelay == true) && (TriedToUnstickRelay == false)){ 
i = 1; 

while(i<21){ //try to break through any oxides on contact by cycling relay 20 times 

digitalWrite(AllZonesOffPin, Open); //this powers up relay 

delay(10);//give a little time for the contacts to open 

digitalWrite(AllZonesOffPin, Closed); //this powers down relay 

delay(10);//give a little time for the contacts to close 
i = i+1; 

} 



R. G. Sparber June 27, 2020 Page 125 of 127 

delay(100);//give time for relay to settle 

TriedToUnstickRelay = true; 
return; 

} 

if((SuspectRelay == true) && (TriedToUnstickRelay == true)){//gave up on relay 

so alarm 

Fault = true; 

StuckRelay = true; 
return; 

} 

} 

 

boolean RelayErrorQ(){ 

if (StuckRelay == true){ 
lcd.clear(); 

lcd.print (F("Hardware failure.")); 

return true; 

}else{ 

return false; 

} 
} 

 

void TestingNewInhibitInterruptedQ(){//see if zone change occurred immediately 

after Inhibit invoked so no alarm set 

if ((Inhibit[PreviousZone] == true) && (CollectFlowAfterInhibit == true) && 

MinorAlarm[PreviousZone] == false){ 
//Inhibit was set on last zone and was in the middle of measuring flow when zone 

change occurred. 

//Assuming Minor Alarm on that zone. If it really is Major, the next zone or no 

zone will get the alarm. 

RequestOverflowMinorAlarmOnPreviousZone = true;//ask Alarm Control to set 

MinorAlarm[PreviousZone] to true 
} 

} 

 

void CleanUpPrematureAlarmExit(){ 

if (RequestOverflowMinorAlarmOnPreviousZone == true){ 

MinorAlarm[PreviousZone] = true; 
ZoneOverflow[PreviousZone] = true; 

Fault = true; 



R. G. Sparber June 27, 2020 Page 126 of 127 

RequestOverflowMinorAlarmOnPreviousZone = false; 

} 
}  

 

void JustMeasureFlowQ(){ 

if (JustMeasureFlow == false)return; 

JustMeasureFlow = false;//user held down PEST button at power up 

//to indicate they want to just measure flow. Now clear flag. 
OldMeasureFlowStartTime = millis(); 

lcd.clear(); 

lcd.print (F("Ready for flow.")); 

lcd.setCursor(0,1); //print next line on second row 

lcd.print (F("Exit? Press PEST")); 

JustFlowTimer = millis() - 1000;//start timer at present minus 1 second so screen 
prints right away 

JustFlow: 

if (debouncedRead(PestAlarmButtonPin) == Pushed){//does user want to exit 

measurement mode? 

  lcd.clear(); 

  lcd.print (F("Exit flow")); 
  lcd.setCursor(0,1); //print next line on second row 

  lcd.print (F("measurements."));    

WaitUntilPestButtonReleasedToEndFlowMeasurements: 

if (debouncedRead(PestAlarmButtonPin) == Pushed) goto 

WaitUntilPestButtonReleasedToEndFlowMeasurements;     

return;//when PEST released, start normal FMC operation 
} 

FlowState = debouncedRead(FlowPin); //look at Flow signal 

  if ((LastFlowState == HighLevel) && (FlowState == LowLevel)){  

  //have a falling edge     

    LastFlowState = LowLevel; //record that Flow is now low 

    FlowTickTime = millis(); //record time falling edge occurred 
    goto ShowLiveFlow; 

  } 

  if ((LastFlowState == LowLevel) && (FlowState == HighLevel)){ //see if there 

is a rising edge 

    LastFlowState = HighLevel; //record that Flow is now high 

  } 
  goto JustFlow;//no falling edge so keep looking 

 



R. G. Sparber June 27, 2020 Page 127 of 127 

ShowLiveFlow: //calculate period and convert to flow 

  if((millis() - JustFlowTimer) > 1000){ //only update display once per second to 
prevent flickering at high flow rates // 20 -(-9990) SO TRUE 

    lcd.clear();  

    if((FlowTickTime - OldMeasureFlowStartTime) == 0)goto JustFlow;//divide by 

0 protection //15 - 0 = 15 

    InstantaneousFlowReading = 1680./(FlowTickTime - 

OldMeasureFlowStartTime); //convert period of flow pulses to 
GPMlcd.setCursor(0,0); //start on first column and first line 

    lcd.setCursor(0,1); //print on second row 

    lcd.print (F("Exit? Press PEST")); 

    lcd.setCursor(0,0); //go back to first line for update    

    if (InstantaneousFlowReading < 10){ //so x.xx 

      lcd.print (F("    ")); 
      lcd.print(InstantaneousFlowReading,2);//display flow with 2 place accuracy 

past decimal   

      lcd.print (F(" GPM ")); 

    }else{ //so xx.xx 

      lcd.print (F("   "));//shortened fill by 1 to make room for extra digit 

      lcd.print(InstantaneousFlowReading,2);//display flow with 2 place accuracy 
past decimal   

      lcd.print (F(" GPM "));  

    } 

  JustFlowTimer = millis();//set new current time     

  }   

OldMeasureFlowStartTime = FlowTickTime; //record new last falling edge time 
goto JustFlow; 

} 

 

//end of file. Be sure the next line has a number but no code follows. 


