

R. G. Sparber January 11, 2023 Page 1 of 53

An eGas Gauge for My Lectric XP eBike,
Version 6.1

By R. G. Sparber

Protected by Creative Commons.1

Introduction
I am the proud owner of a Lectric XP eBike. It has a range of

about 20 to 40 miles, depending on many factors2. The ever-

present question is – will the battery last until I get home? My

eGas Gauge can’t answer that, but it can provide a continuous

readout of the battery’s remaining energy. This information can

help you manage your ride.

Conclusion
The eGas Gauge continuously displays3 the remaining energy in the battery under

all conditions.

If riding conditions do not change, the distance covered during the time the battery

goes from Full to ¾ can be used to estimate the range: multiply this distance by 4.

The estimated cost of the electronics is under $10.

The built-in energy meter has a large error when the battery is more than 3/4 full or

when there is a strain on the motor.

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA. You are free to turn my proof-of-concept into a product. I ask nothing in return.

You are not free to modify this article without my permission.
2 Energy consumption is influenced by my speed, the wind, terrain, how much I pedal, my weight, tire pressure, road

surface, plus the weight of any cargo.
3 Here is a YouTube video of the display using a simulator that tricks the circuit into thinking the battery goes from

full to empty in about 2 minutes.

https://www.youtube.com/watch?v=f5i9Q-v4eYM&t=23s

R. G. Sparber January 11, 2023 Page 2 of 53

Technical Summary
This system is a “Coulomb Counter.” It takes the integral of the current and

subtracts it from the full battery’s capacity. The result is continuously conveyed to

the user via two LEDs via their relative brightness.

There is a one-time4 Calibration that enables the rider to define what they call Full

and Empty. Each time the battery is fully charged, the user resets the count to Full.

Contents
Introduction .. 1

Conclusion ... 1

Technical Summary ... 2

The Problem ... 4

Ampere-hours ... 5

What does it look like? .. 6

Features .. 8

What is the eGas Gauge Doing? .. 9

Battery Theory ... 9

The Rider’s View ...10

Measuring the Current From the Battery ...12

Lithium-Ion Batteries and the eGas Gauge ..12

The Physical Design...12

User’s Guide ..15

Error Indications ..15

First Time Use ..16

After Every Charging of Your eBike Battery ..17

Ready to Ride ...17

At the End of Your Ride ..19

Reminder Card ...20

The Schematic and Bill Of Materials...21

Construction Hints ...22

4 Over time, the battery will degrade. If severe enough, another calibration will be needed.

R. G. Sparber January 11, 2023 Page 3 of 53

The Circuit Board...22

The Current Sensing Circuit: Electrical ...25

The Current Sensing Circuit: Physical ...26

Circuit Description ...31

Overview ..31

The Input ..32

The Output ...36

The High-Level Software View ...37

Overview ..37

Key Design Elements ...37

Calibration Theory ...38

The Logic Behind the Software ...40

System Status Flash Sequences ...42

The Power Up Strategy ..42

EEPROM Strategy ...43

The Medium-Level Software View ...44

The Low-Level Software View ...45

The First Field Testing ...46

Calibration ..46

Test Ride ..46

First Set of Data ...47

Analysis of the First Set of Data ..47

Second Set of Data ...49

Analysis of the Second Set of Data ...49

The Second Field Testing ..50

The Third Field Test ..51

Conclusion ...52

Final Comments ...52

Acknowledgment ...53

R. G. Sparber January 11, 2023 Page 4 of 53

The Problem
Many factors influence how far I can ride on a charge.

The display, mounted on the handlebars, includes an “ENERGY

BAR.” This is a bit of fiction because it displays battery voltage.

The battery voltage drops about 10% as I go from Full to Empty.

Along the way, it rises and falls depending on how much current is

flowing out of the battery. It is common to lose a few bars during a

climb and reclaim most of them on the descent.

The motor controller automatically turns off when the battery voltage is too low. If

my battery is almost fully discharged and I increase the current, the voltage can

drop low enough to shut off the cruise control or the Controller.

My speed is a function of battery voltage and current. As the battery discharges, I

go slower for the same current. So, to maintain the same speed, I must increase the

current. Given a constant speed, I’ll be drawing more current at the end of my ride

than at the start.

The battery’s capacity is rated in ampere-hours, not volts.

So what does this all mean? I know that my battery is fully charged when I unplug

my charger, showing a green light. The battery is rated at 10.4 ampere-hours, so

that is the most that I can take out.

Energy consumption is influenced by my speed, the wind, terrain, how much I

pedal, my weight, tire pressure, road surface, plus the weight of any cargo. This is

why it is so hard to predict range. However, we can monitor how many ampere-

hours are still in the battery.

This gets us to the last piece of the puzzle: when is the battery Empty? I can define

this point as when the cruise control shuts down or when the Controller shuts

down. Or, I can define Empty as when there are only two ampere-hours left. It is a

matter of personal preference. The user must be able to define what they mean by

Empty.

R. G. Sparber January 11, 2023 Page 5 of 53

In a field test, I was drawing about 12 amperes at low battery when my cruise

control shut down. I define this as “Empty.” An inspection of the data collected by

the eGas Gauge indicated that I had about 20% left in the battery. This is

reasonable.

You will see how my design addresses all of these factors.

Ampere-hours
If I graph the current flowing out of my battery over time, it might look like this:

The current quickly changes from 0 to 20 amperes. Think of having a bucket of

water and a cup. Every second you use the cup to remove some water. How much

water remains depends on how much you take each second.

Looking at the remaining ampere-hours (Ah) in the battery, I would see

R. G. Sparber January 11, 2023 Page 6 of 53

Starting with a full battery, we have 10.4 Ah. As I ride, current is flowing from the

battery to the motor. How many ampere-hours remain in the battery depends on

how much current is drawn each second5. In this example, I used about

10.4 – 10.1 = 0.3 Ah in 120 seconds. This is 0.15 Ah per minute. If I continued this

pace, my battery would be depleted in
10.4 𝐴ℎ

0.15 𝐴ℎ 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒
= 69 𝑚𝑖𝑛𝑢𝑡𝑒.

Since my current changes every second, it is not practical to perform this

accounting manually. However, this is easy work for even the tiniest computer.

What does it look like?
The eGas Gauge isn’t much to look at. All of the complexity is in the software.

I knew the design would evolve, so I chose to build a large

box. It is secured to the bike with the same bolts that hold

the front of the back rack in place.

This hole with the screen on top

was from a previous iteration of

the design that involved sound.

5 Theoretically, it is current drawn over time as a continuous function. However, from a practical standpoint, reading

the current every second is good enough. I then assume that the current is at this value over the following second.

R. G. Sparber January 11, 2023 Page 7 of 53

The box contains

three AA batteries in a holder,

a toggle switch, and

a circuit board.

That round thing on the circuit board is left over from the audio output iteration

and is no longer there.

The circuit board contains a tiny computer system that costs

only $1.50, four resistors, two capacitors, and two

connectors.

The LED display mounts on the handlebars.

R. G. Sparber January 11, 2023 Page 8 of 53

Features
• Although designed for the Lecric XP eBike, it should work on any eBike.

• The eGas Gauge measures the current flowing out of the bike’s battery over

time (ampere-hours) to estimate the remaining available ampere-hours. This

is far more accurate than measuring voltage.

• It keeps the rider informed of the battery’s state via a handlebar-mounted pair

of red6 LEDs.

• The user determines what they define as an Empty battery.

• The user’s preference plus the remaining ampere-hours in the battery are

stored in a memory that is not erased when power is removed.

• The eGas Gauge’s internal batteries are tested each time the eGas Gauge is

turned on.

• If the user forgets to turn off the eGas Gauge, they will see an LED flash

every 2 minutes.

• After 10 minutes of the bike being turned off, the eGas Gauge will

essentially7 power down. Toggling the power switch off and then back to run

will restore operation.

• Low electronics parts count: 4 resistors, two capacitors, one integrated circuit8

(that costs $1.50), plus two LEDs. The current shunt is free.

• The internal batteries should last more than 200 hours.

• This design is freely offered to the public at no charge and includes details of

the physical design, electrical design, and the software. If someone wants to

transform this information into a product, they have my blessing. I do not

expect, nor would I accept and money from them.

6 I found that only red LEDs are visible thorugh my sunglasses.
7 The current is less than 0.5 microamperes so will have minimal drain on the batteries that power the eGas Gauge.
8 This is a system-on-a-chip with an impressive amount of computing power.

R. G. Sparber January 11, 2023 Page 9 of 53

What is the eGas Gauge Doing?
You can skip to the User’s Guide, page 15, if you don’t care how it works.

Battery Theory
My battery is rated at 10.4 ampere-hours (Ah). Starting with a fully charged

battery, if I draw a constant 10.4 amperes from the battery for

10.4 𝐴𝐻

10.4 𝑎𝑚𝑝𝑒𝑟𝑒
= 1 hour, it will be empty. Draw a constant 5.2 amperes, and I can

go for
10.4 𝐴𝐻

5.2 𝑎𝑚𝑝𝑒𝑟𝑒
= 2 hours. For this simple case,

𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 =
10.4 𝑎𝑚𝑝𝑒𝑟𝑒−ℎ𝑜𝑢𝑟𝑠

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑟𝑎𝑤𝑛 𝑖𝑛 𝑎𝑚𝑝𝑒𝑟𝑒𝑠
. (1)

Of course, I rarely draw the same current for more than a minute.

With the current continuously changing, it is not useful to predict the remaining

run time. However, it is possible to calculate the remaining Ah:

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐴ℎ = 10.4 𝐴ℎ − 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝐴ℎ (2)

R. G. Sparber January 11, 2023 Page 10 of 53

The Rider’s View
When riding, I don’t care about ampere-hours. It is more

useful to know how much is left in the battery, just like in

my gas-powered car.

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑡𝑎𝑡𝑢𝑠 =
10.4 𝐴ℎ− 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝐴ℎ

10.4 𝐴ℎ
 (3)

The battery status goes from 1 down to 0 as I ride.

Consider the simple case of drawing 5.2 amperes for 1 hour. My consumed Ah

would be 5.2 𝑎𝑚𝑝𝑒𝑟𝑒𝑠 × 1 ℎ𝑜𝑢𝑟 = 5.2 𝐴ℎ. Equation (3) predicts

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑡𝑎𝑡𝑢𝑠 =
10.4 𝐴ℎ− 5.2 𝐴ℎ

10.4 𝐴𝐻
.

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑡𝑎𝑡𝑢𝑠 =
1

2

Say I drew 5.2 amperes for 1 hour and then 1.3 amperes for 2 hours. My

consumed Ah would be

(5.2 𝑎𝑚𝑝𝑒𝑟𝑒𝑠 × 1 ℎ𝑜𝑢𝑟) + (1.3 𝑎𝑚𝑝𝑒𝑟𝑒𝑠 × 2 ℎ𝑜𝑢𝑟𝑠) = 7.8 𝐴ℎ

I can plug this consumed Ah into equation (3):

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑡𝑎𝑡𝑢𝑠 =
10.4 𝐴ℎ− 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝐴h

10.4 𝐴ℎ
 (3)

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑡𝑎𝑡𝑢𝑠 =
10.4 𝐴ℎ− 7.8 𝐴ℎ

10.4 𝐴ℎ
.

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑡𝑎𝑡𝑢𝑠 =
1

4

This hand calculation becomes unmanageable when dealing with the real world. I

would need to record the current every second and then add it to the consumed Ah.

R. G. Sparber January 11, 2023 Page 11 of 53

Then I would need to calculate the battery status. This bookkeeping is not

compatible with staying upright on my eBike!

Key Point: When I fully charge the battery, I also reset the eGas Gauge’s

consumed ampere-hours to zero. Once every second, the eGas Gauge measures

the current and adds it to the tally.

I drive two red LEDs that convey the remaining

energy in the battery. Details are presented on page

15.

These LEDs also displays a warning when the AA batteries are low and when there

is a memory failure.

I run Calibration that teaches the eGas Gauge the battery’s capacity. This is

repeated when there has been a noticeable degradation of the battery. See page 38

for details.

R. G. Sparber January 11, 2023 Page 12 of 53

Measuring the Current From the Battery
The current, I, is measured by reading the voltage, 𝑉𝑠ℎ𝑢𝑛𝑡, across a shunt resistor,

𝑅𝑠ℎ𝑢𝑛𝑡.

𝑉𝑠ℎ𝑢𝑛𝑡 = 𝑅𝑠ℎ𝑢𝑛𝑡 × 𝐼 (4)

𝑅𝑠ℎ𝑢𝑛𝑡 is the wire that runs between the battery and the electronics box inside my

eBike. I’ll explain this later.

Lithium-Ion Batteries and the eGas Gauge
I am not an expert on Lithium-Ion batteries. From a quick search of the web, it is

clear that the available ampere-hours for a battery depend on many factors,

including ambient temperature9, load current variation, and the number of

charge-discharge cycles. If there is a large change in ambient temperature, how

you ride, or the passage of time, you may need to recalibrate the eGas Gauge.

Fortunately, this only involves charging up your battery and riding your eBike until

you say the battery is ready to be recharged.

The Physical Design

I wanted to build an enclosure that was at least

as rugged as my eBike. OK, maybe I overdid it.

My eGas Gauge is secured to my Lectric XP

using the bolts used by the luggage rack’s

forward supports. The existing 10-32 Socket

Head Cap Screws were replaced with longer

ones.

9 The circuit can measure ambient temperature but the error is so large that the resulting correction factor can make

things worse.

R. G. Sparber January 11, 2023 Page 13 of 53

The eGas Gauge is tucked away under my seat post,

where it is out of the way.

The calculations needed to track the remaining energy in the

battery come from a delightfully small computer system called

the ATtiny85. It costs about $1.50 in single lots.

The LEDs clamp to the handlebars. They are extremely

rugged, compact, and low cost. This enclosure is made

of aluminum.

Besides the hardware cost, you will need to load the

ATtiny85 with my software. I use a USBtinyISP burner,

which is driven by the Arduino IDE10.

10 Search the Web with keywords “arduino attiny85 download Sparkfun” for what I used.

R. G. Sparber January 11, 2023 Page 14 of 53

I chose to use 1/8 inch thick aluminum extrusions to build my enclosure. The

corners are secured with screws threaded into ½ inch square bars. This is one solid

box.

The cover, not shown here, is removed when I need to replace the three AA

batteries. I estimate that this must be done once a year.

It is well hidden, but a thin wire runs from inside the eBike and into the enclosure.

It carries a voltage that is proportional to the current out of the eBike’s battery.

Equally well hidden is a toggle switch that points down. Reach under the enclosure

from the back side and lift up to turn on the eGas Gauge. Push down to start the

Initialization process and the Calibration process.

R. G. Sparber January 11, 2023 Page 15 of 53

User’s Guide

Two LEDs flash out status information or

provide a proportional indication with their

relative brightness.

Error Indications
• the lower LED flashing short bursts11 for twenty seconds - it means that the

AA batteries powering the eGas Gauge need to be replaced soon12. The

circuit will continue to work for a while, but the LEDs will be dim.

• The upper LED is on for 0.1 seconds, then the lower LED is on for 0.1

seconds. This pattern continuously repeats. – this is a hardware failure

within the computer device.

11 50 ms on and 50 ms off
12 They should last over 200 hours of riding.

R. G. Sparber January 11, 2023 Page 16 of 53

First Time Use
Before the eGas Gauge can tell you how much energy is left in your battery13, it

has to go to school. It will learn what you consider an empty battery plus calibrate

its current sensing circuit. I call this Calibration.

Start with a fully charged battery and fresh AA

batteries. Then move the toggle switch from Off to

Initialize.

You will see the top LED light for 2 seconds,

followed by the bottom LED flashing eight times14

and then two seconds of darkness. This will be

followed by another set of eight short flashes on the

bottom. During the first set of short flashes or the

dark interval, move the switch back to Off.

When you are ready to go on your Calibration ride,

move the switch from Off to Run. Ignore the LED

flashes.

Ride your bike until the battery, in your opinion, is Empty. It is common to

consider 2 or 3 bars on the ENERGY BAR a comfortable definition of Empty. This

is read when the bike has not moved for one minute. Then move the switch from

Run to Off.

The draining of the battery to Empty does not have to be in one ride. Just

remember to move the switch from Off to Run when you turn the bike on and

return the toggle switch to Off when you turn the bike off.

When the battery is Empty, move the switch from Off to Initialize. You will see

the flash pattern described on page 16. Then the bottom LED will light for 2

13 As the battery ages, its capacity will degrade. At some point, it may be necessary to recalibrate.
14 Each short flash lasts 50 milliseconds and it is followed by 50 milliseconds of darkness.

R. G. Sparber January 11, 2023 Page 17 of 53

seconds which is followed by a continuous fast series of flashes15 from the lower

LED. This means Calibration has been completed. Then move the switch back to

Off. The eGas Gauge is now ready for service.

If you later change your mind and decide that “Empty” is at a different level, just

repeat the process, and this level will become the new bottom.

After Every Charging of Your eBike Battery

Every time you fully charge your eBike battery,

move the toggle switch to Initialize.

You will see the two-second flash from the top LED

followed by eight short flashes from the bottom

LED, two seconds of darkness, and then another

eight short flashes from the bottom LED. During the

first set of short flashes or the dark interval, move

the switch back to Off16.

The eGas Gauge now knows your battery is fully charged.

Ready to Ride

When you are ready to ride, move the toggle switch

to Run.

You will immediately see the battery status.

15 50 ms on and 50 ms off
16 If you see the lower LED come on for 2 seconds, you have entered the Calibration state and must perform the

First Time Use procedure again. It isn’t the end of the world but is best to avoid this hassle.

R. G. Sparber January 11, 2023 Page 18 of 53

As energy level falls from full to ½, the LEDs

smoothly transition from the top being on full

brightness to the bottom being on full

brightness. Then the cycle repeats as we go

from ½ to empty. Here is a video of one cycle.

• When the battery is fully charged, the top LED is on full brightness, and the

bottom LED is dark.

• At ¾ charge, both LEDs are on at the same brightness.

• At ½ charge, the top LED is dark, and the bottom LED is on full brightness.

• Then the cycle repeats.

• Just below ½ charge, the top LED goes on full brightness again.

• At ¼ charge, both LEDs are on at the same brightness.

• When I reach empty, the bottom LED is on full brightness, and the top LED

is dark.

https://www.youtube.com/watch?v=XZJ54lyVNT4

R. G. Sparber January 11, 2023 Page 19 of 53

At the End of Your Ride
To save the AA batteries powering the eGas Gauge, switch to Off at the end of

your ride.

When you ride again, move the toggle switch to Run. The circuit will remember

how much eBike battery energy you have left.

If you forget to turn the eGas Gauge off, its batteries will run down, but the

eBike’s battery level is not lost.

R. G. Sparber January 11, 2023 Page 20 of 53

Reminder Card
Until the procedure becomes second nature, you may find this card useful. I am

assuming you have the LED option.

One Time Calibration:

1.battery fully charged

2.Off → Initalize

3.wait until first 8 short flashes

4.Initalize → Off → Run

5.Ride until battery empty

6.Run → Off → Initalize

7.wait until continuous short flashes

8.Initalize → Off

eGas Gauge
After Fully Charging battery:

1.Off → Initalize

2.wait until 8 short flashes

3.Initalize → Off

Start of Ride: Off → Run

End of Ride: Run → Off

R. G. Sparber January 11, 2023 Page 21 of 53

The Schematic and Bill Of Materials

Bill Of Materials

C2 will never see more than 5 volts. I chose

one with a working voltage of 16 volts

because I didn’t have an electrolytic with a

smaller working voltage.

If you can find a toggle switch that is spring-

loaded on the init side, it would be better.

J1 – J3, and the DIP socket are optional. I use

them because it makes it far easier to remove

the circuit when I need to make changes.

The current shunt resistor is not listed in the Bill Of Materials because there is

nothing to buy.

R1 3.9K, 0.1W, 10%

R2, R3 10K, 0.1W, 10%

R4 330, 0.1W, 10%*

LED 1 & 2 Red LEDs

C1 0.01uf

C2 2.2uf, 16V

electrolytic

 - Center off DPDT

toggle

J1 – J3 Keyed 3 pin

connectors

 - 3 AA Batteries

 - 3 AA battery holder

 - ATtiny85

 - 8 pin DIP socket

R. G. Sparber January 11, 2023 Page 22 of 53

Construction Hints
The Circuit Board
I used a 1¾ inch x 1¾ inch perf board but filled only about 1 x 1¾ of it.

The physical layout of the board closely matches the symbol placement of the

schematic. The plugs were premade, so I assigned pins to match the wire color.

I use a dab of oil-based white paint to mark

pin one on the ATtiny85. There is a recess

there, and the paint is protected.

The board is supported on the corners by ¼

inch tall standoffs. Since there will be a lot of

vibration, I used split washers with these

standoffs.

Each predrilled hole has a copper land around

it. This made soldering in components easier

than if I had used a blank board.

Bare wire is used for all connections. I did

sleeve two wires using insulation from

another wire. This is much easier than trying

to strip the ends of tiny wires.

Pin 4 of the ATtiny85 is my single point ground.

This picture is a bit old. The nut you see above the wiring held a component that is

no longer used.

R. G. Sparber January 11, 2023 Page 23 of 53

If you prefer to etch your own board, here is single-sided artwork designed to

tolerate a lot of over-etching. Of particular importance is that the standoffs on the

corners must not contact the ground plane.

I remove as little copper as possible. This gives me the most ground plane to keep

the circuit quiet plus uses as little etchant as possible.

R. G. Sparber January 11, 2023 Page 24 of 53

This is my first iteration

before I realized that my

stand-offs would short out

to the ground plane. I also

made the copper-free areas

wider than necessary.

I made no attempt to

minimize area.

The ATtiny85 is running

software version 2.3.

R. G. Sparber January 11, 2023 Page 25 of 53

The Current Sensing Circuit: Electrical

Current flows out of the + terminal of the battery,

through the bulkhead connector, and through the

power connector. It then passes through the eBike

Controller, back through the power connector and

bulkhead before entering the – terminal of the

battery.

I need to measure this current. A standard

technique is to use a current shunt. It is a low

resistance, high wattage resistor placed in series

with the battery. The shunt transforms this current into a tiny voltage, which is fed

into the circuit. This shunt can be any value between 3 and 6.4 milliohms17.

Being a frugal engineer, I didn’t want to spend

any money on a shunt. Besides, the shunt

generates unwanted heat while wasting

valuable battery power. Even at 3 milliohms, it

dissipates as much as 1.2 watts.

My first idea was to measure the voltage drop

between the Controller and the bulkhead. To

my amazement, I generated a usable voltage as

the current went from 0 to 20 amperes. But on closer inspection, I found that the

relationship between voltage and current was not linear. At currents below about

10 amperes, the shunt’s resistance was 3.7 milliohms. At 20 amperes is was more

like 5 milliohms, but the longer I stayed at this current, the higher this resistance

became. A rise of 1.3 milliohms may not sound like much, but it is a rise of 35%.

After some head-scratching, I realized that something was heating up and

increasing the shunt’s resistance. The obvious culprit was the power connector.

17 See page 20 for details.

R. G. Sparber January 11, 2023 Page 26 of 53

Using a few inches of heavy wire, I

bypassed the power connector’s negative

side.

This solved the drifting shunt resistance problem. My resistance was a constant 3.0

milliohms.

The Current Sensing Circuit: Physical
Electrically, this is a simple solution. Physically, it was a little tricky and may be

scary for some people. You do have to open up the eBike and mess with that wire.

Here is the bulkhead with the four mounting

screws removed.

R. G. Sparber January 11, 2023 Page 27 of 53

This bulkhead lifts out to reveal a

maze of loose wires and the

Controller.

The wire from the Controller connects

to the

power connector

which connects to a heavier gauge

wire that goes to the

bulkhead.

The power connector is wrapped in black 3M electrical tape to prevent it

from falling apart due to vibration.

This thin, copper-colored wire is the sense wire going to the bulkhead.

R. G. Sparber January 11, 2023 Page 28 of 53

After cutting the black wire18 on each

side of the power connector, I

soldered in my

Heavy gauge bypass wire.

This picture shows the tape removed from around the connector, but that turned

out to be a minor mistake. Just leave the tape on.

Note that I used heat shrink over all connections. This is far more robust than

electrical tape.

18 Gasp! This is my $900 eBike.

R. G. Sparber January 11, 2023 Page 29 of 53

The bulkhead consists of

heavy metal fingers molded into a

plastic frame. If you tried to solder

directly to one of these fingers, there

is a risk that the plastic would soften

and the metal finger would move out

of alignment. That would ruin the

bulkhead.

I chose to cut the black wire about ½

inch back from the bulkhead. After

sliding on the appropriate size piece

of heat shrink tubing, I tinned both

ends of the power wire plus my

voltage sense wire.

Then I formed hooks and crimped the

wires together. As I applied heat and

more solder, I was able to safely

make a low resistant, rugged, high

current connection without

significantly heating the metal finger.

Be careful where you point your heat gun as you shrink that tubing. You risk

melting plastic parts that would be hard to replace.

Be generous with the length of the sense wires. You do not want to have to go back

in here to attach a longer wire. Think about where you want to place the circuit’s

enclosure and run the wire there. Then add another foot.

I didn’t take a picture of the connection near the Controller. This wire is thinner, so

it is easier to handle. I left about an inch between the body of the Controller and

my connection.

R. G. Sparber January 11, 2023 Page 30 of 53

With the wires out of the way, gently push the

Controller down into position. Then stuff the

many wires around it. The Controller must be

down far enough to not press on the backside of

the bulkhead.

Replace the bulkhead

and install the four

screws. They should be

snug. If you overtighten

them, you run the risk of

cracking the plastic.

I hope that wasn’t too

scary.

R. G. Sparber January 11, 2023 Page 31 of 53

Circuit Description

Overview

The eGas Gauge measures the current flowing out of the eBike’s battery and drives

a display. Almost all of the complexity is inside the ATtiny85 device. It is a system

on a chip with both analog and digital functionality.

The current is converted to the shunt voltage, Vsh, by the shunt resistor described

on page 25. It is fed into a Low Pass Filter (LPF) that removes frequencies that are

too high to be processed. The resulting voltage is amplified by a factor of 20 before

being fed into an Analog to Digital Converter (ADC). The processor reads the

ADC when it needs to know the current flowing at that moment.

The processor reads the state of the switch to know when Initialization or

Calibration has been requested. Data that must survive a loss of power is stored in

the EEPROM. The processor outputs the remaining battery level to the display.

R. G. Sparber January 11, 2023 Page 32 of 53

The Input
While riding, a current, I, flows from the eBike battery’s + terminal and into the

eBike Controller. This current returns on the – terminal. As this current flows from

the Controller to the bulkhead, Vin, is developed. Given a shunt resistance of 3

milliohms, Vin will be a maximum of

3 𝑚𝑖𝑙𝑙𝑖𝑜ℎ𝑚𝑠 × 20 𝑎𝑚𝑝𝑒𝑟𝑒𝑠 = 60 𝑚𝑖𝑙𝑙𝑖𝑣𝑜𝑙𝑡𝑠.

This may not seem like a lot, but the circuit cannot process an input voltage of

more than 128 millivolts.

 This voltage is applied to R1 and C1, which

form a low pass filter with a corner frequency

of about 4 kHz. It limits the noise into the

ATtiny85 plus prevents aliasing in the Analog

To Digital Converter. The voltage across C1 is

applied to ATtiny85 pins 3 and 2. Pin 3 is the

positive input of a differential amplifier. Pin 2

is the negative input. See the ATtiny85 spec

sheet for details.

R2 and R3 divide the battery voltage by two, so it is within the range of the Digital

Converter. It supports the AA battery check function.

C2 attempts to keep the supply voltage quiet. Since I can’t ride my eBike while

monitoring with my oscilloscope, I have no idea how close I am to being in

trouble. Field tests show that 2.2uf works reliably. Noise immunity is helped by the

fact that the eGas Gauge is only grounded by the negative Vin connection.

Changing to a power converter tied to the eBike’s battery would increase noise.

R. G. Sparber January 11, 2023 Page 33 of 53

Pin 1 is the ATtiny85’s reset pin and has a weak internal pullup resistor. Do not

connect to this pin.

The toggle switch is Double Pole Double Throw (DPDT) with center off. If you

only have a Single Pole Single Throw switch, you can add a normally open single-

pole pushbutton and make this work. Init would then mean holding down the

button and moving the switch to on. For Run, just move the switch to on.

Don’t let the size of the ATtiny85 fool you into thinking it is simple. The spec

sheet runs to 226 pages. I will not attempt to duplicate this information here but

will talk about the relevant elements at a high level. To fully understand my

software, I suggest you have a copy of the spec sheet handy.

R. G. Sparber January 11, 2023 Page 34 of 53

Inside the ATtiny85 is a differential voltage

amplifier configured to have a gain of 20. It

feeds into the ADC.

Although I don’t know the exact value for

𝑅𝑠ℎ𝑢𝑛𝑡 I do know its limits. The ADC uses a

2.56V reference, and this is the maximum

voltage it can convert.

When the ADC sees 2.56V, it means that Vin, which is also Vshunt, must be
2.56𝑉

20
= 128 𝑚𝑖𝑙𝑙𝑖𝑣𝑜𝑙𝑡𝑠.

𝑉𝑠ℎ𝑢𝑛𝑡 = 𝑅𝑠ℎ𝑢𝑛𝑡 × 𝐼 (4)

or

𝑅𝑠ℎ𝑢𝑛𝑡 =
𝑉𝑖𝑛

𝐼
 (5)

The maximum current is 20 amperes. Since I know the maximum Vshunt and the

maximum current, I can calculate the maximum shunt resistance is

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑠ℎ𝑢𝑛𝑡 =
128 𝑚𝑖𝑙𝑙𝑖𝑣𝑜𝑙𝑡𝑠

20 𝑎𝑚𝑝𝑒𝑟𝑒𝑠

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑠ℎ𝑢𝑛𝑡 = 6.4 𝑚𝑖𝑙𝑙𝑖𝑜ℎ𝑚𝑠

This is a damn small number! However, on my eBike, it is 3 milliohms. Your

eBike should be in the same neighborhood, assuming you follow the construction

hints. Since I did not test a shunt resistance less than 3 milliohms, I’ll call this the

minimum Rshunt.

The circuit draws about 6 mA, except for the brief moments when the LEDs are

on. I’m using 1500 mAH AA batteries. This means I should be able to run for

about
1500 𝑚𝐴𝐻

6 𝑚𝐴
= 250 ℎ𝑜𝑢𝑟𝑠. My typical ride is 1.5 hours, so I can expect to

replace the batteries every
250 ℎ𝑜𝑢𝑟𝑠

1.5 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑟𝑖𝑑𝑒
= 167 rides. If I rode three times a

week, the batteries should last
167 𝑟𝑖𝑑𝑒𝑠

3 𝑟𝑖𝑑𝑒𝑠 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘
= 56 𝑤𝑒𝑒𝑘𝑠. That’s more than a

year.

R. G. Sparber January 11, 2023 Page 35 of 53

After I move the toggle switch from Off to Run, the circuit powers up, and the

software detects that pin 5 is high19. This causes the code to read the AA battery’s

voltage. To do this, ATtiny85’s pins 6 and 7 are configured as inputs, which

effectively disconnects the LEDs from pin 7. The software then reads the voltage

on pin 7. This voltage equals approximately half of the battery voltage, Vcc.

When the toggle switch is moved from Off to Initialization, the circuit powers up,

and the software detects that pin 5 is grounded. That begins the Initialization

sequence. If the user then moves the switch back to Off, the EEPROM is updated

to show that the eBike’s battery is full. If the user leaves the switch in the

Initialization state, the software reads the voltage on pin 7 and saves it as the value

when fresh AA batteries have been installed. This value is stored in the EEPROM

along with the eBike battery’s capacity, as will be described on page 38.

19 There is an internal pull-up resistor.

R. G. Sparber January 11, 2023 Page 36 of 53

The Output
After the battery check, pins 6 and 7 are configured as outputs. When pin 7 is high,

and pin 6 is low,

LED1 is on and

LED2 is off. When pin 6 is high, and pin 7 is low, LED1 is off, and

LED2 is on.

By alternating the states of pin 6 and 7 fast enough, I change the

relative brightness of the LEDs. Note that the total brightness is

constant.

R. G. Sparber January 11, 2023 Page 37 of 53

The High-Level Software View
Overview
The software takes up half of the available program store and 10% of the data

memory. I do many direct writes to hardware registers, so I had to fully understand

the ATtiny85. I give credit to Atmel. Their spec sheet is well organized, clear, and

accurate.

Key Design Elements
I wasted a lot of effort trying to accurately measure Rshunt. I also wrestled with not

knowing what each user defines as a battery in need of recharging. Then, one

night, the solution popped into my head – let the software do it! This is the

Calibration function described in the User’s Guide.

Mark Twain once said, “I didn’t have time to write you a short letter, so I wrote a

long one.” In other words, simplicity takes effort. I spent most of my design effort

simplifying the User interface. I would build display hardware, write the associated

code, field test it, be dissatisfied, and start over.

My current design has two key elements: the energy scale is divided into twelfths,

and the display consists of two LEDs.

Why twelfths? I found that I could count four quick flashes of light at a single

glance but no more: four flashes – quarters of the scale. This was too coarse, so I

added a second LED. At first, I found ways to indicate quarters of the quarter. All

schemes failed my field test. They were too confusing or distracting.

A point of annoyance was that half within a quarter was not centered. Eventually, I

realized that I must divide the quarter into an odd number of parts if I want to

indicate the center. Having five parts was too confusing, so I settled on three parts.

This let me indicate high, middle, and low. Given the two LEDs, the top one

indicates high, the bottom LED indicates low, and when both are on, that is the

middle. If I’ve done my job right, you will see this as glaringly obvious.

Given quarters and thirds of quarters, we end up with 4 x 3 = 12 parts. Hense, I

divided the scale by twelfths.

R. G. Sparber January 11, 2023 Page 38 of 53

Calibration Theory
When is the battery “Empty?” It is, nominally, a 10.4 ampere-hour battery, so one

answer is to say it is Empty when I have drawn 10.4 ampere-hours from it. Most

people would be uncomfortable draining the battery this much. Think of how often

you fill the gas tank on your car. If you don’t let the needle go below ¼, then the

effective definition of Empty is ¼. “Empty” is in the eye of the beholder.

Since I have not figured out how to write code that can read your mind, the next

best thing is to ask. This is what Calibration does.

Two variables are involved in this process, FullChargeCount, and

RemainingEnergyCount. I will use a bucket of water to explain.

When the bucket is full, I put a mark on the bucket and call it

“Full.” I also have a piece of tape with a mark on it, pointing to

this same level. Call this the “Remaining.”

Then I randomly take water out of the bucket. Each time, I record

how much I took plus move the tape so it again points to the

current level of water. It doesn’t matter what units I use on my

measuring cup.

At some arbitrary point, I decide the bucket is

empty enough, and I want to refill it. I mark this

water level as “Empty.” My records show the

total amount of water I scooped out of the

bucket. This is the change in water level.

Notice that the remaining water effectively doesn’t exist.

R. G. Sparber January 11, 2023 Page 39 of 53

The user would be none the wiser if I moved my Full and Empty

lines down the side of the bucket. Empty now equals zero. Full

equals the change in water level. My bucket is “calibrated.”

I refill the bucket to the Full line and set Remaining equal to the Full value. This

time I do not look into the bucket but do keep track of what I take out using the

same measuring cup used during Calibration.

Each time I take some water, I subtract that amount from

Remaining. Without looking into the bucket, I know how

much water is left.

Notice that the capacity of the bucket is not important. I only need to know how

much water I took out before I felt it is was time to refill. It is also not important to

know the units on the side of the measuring cup. Each time I refill the bucket, I

initialize Remaining to Full.

 Let’s return to the eBike’s battery. My scheme does

not need to know the capacity of the battery. I just

need to know how many ampere-hours I took out

before I felt it was time to recharge. I also do not need

to know the relationship between the current out of the

battery and the corresponding number generated by the

circuit. When I recharge the battery, I initialize

Remaining to Full.

R. G. Sparber January 11, 2023 Page 40 of 53

The Logic Behind the Software
The software does not bother with ampere-hours. It deals in step-seconds.

The ADC is configured to be differential 10 bit20,

which means it outputs a number between -512

and +511. The maximum value that can be

subtracted from the Remaining Energy Count

each second is therefore 511. This corresponds to

the maximum possible current from the battery,

which is 20 amperes. Given that the battery is

rated at 10.4 ampere-hours, we can sustain this current flow for
10.4 𝑎𝑚𝑝𝑒𝑟𝑒−ℎ𝑜𝑢𝑟𝑠

20 𝑎𝑚𝑝𝑒𝑟𝑒𝑠
= 0.52 ℎ𝑜𝑢𝑟𝑠, which is 1872 seconds. The Remaining Energy

Count would drop by

511 𝑐𝑜𝑢𝑛𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 × 1872 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 956,592 counts. By defining

Remaining Energy Count as a long, it can easily contain this number. Furthermore,

if the Remaining Energy Count was initialized to 0, we could still handle the

maximum change in count. The Remaining Energy Count would contain a

negative number. The calibration logic handles this case because it is only looking

at the change in count.

Right after installing the software into the ATtiny85, the EEPROM that holds the

FullChargeCount may be corrupted. This condition is detected, and

FullChargeCount is set to 448,402. This number comes from assuming a shunt

resistance of 3 milliohms, a battery capacity of 10.4 Ah, and an idea ADC

conversion.

RemainingEnergyCount is set to zero. This is the same as an empty bucket with

Full being marked above the top. Don’t worry, this will be soon corrected.

The user must first fully charge the eBike’s battery. Then they go from Off to

Initialize and back to Off. This will set

RemainingEnergyCount to 448,402. This

value should be close to the value set by

the user so the eGas Gauge should be

usable even without Calibration.

20 Due to limiations in the ATtiny85, I can only get the 20X amplifier if I also accept the ADC configured to be

differential. This is not all bad because it enables me to cancel the DC offset in this amplifier and the ADC.

R. G. Sparber January 11, 2023 Page 41 of 53

The user then goes from Off to Run and rides their

eBike until…

the battery level, as indicated by the ENERGY BAR21, is

considered, by them, to be ready to recharge (i.e., Empty). It can be

with any number of bar segments.

During this time, RemainingEnergyCount is decremented by the

count equivalent of the current each second.

With the battery at “Empty,” the user

goes from Run to Off and then to

Initialize, but this time they leave it

in this position until they see a

continuous stream of short flashes.

This means Calibration was performed. Then they go back to Off.

During Calibration, the change in RemainingEnergyCount is calculated, and the

result is saved as the FullChargeCount.

Recap: during the Calibration ride, the battery goes from Full to Empty while we

recorded the number of ampere-hours drained from it. This number is the effective

capacity of the battery. By storing this value as the FullChargeCount, we have

characterized the battery as seen through the circuit.

Charge the battery back up and go do an Initialization, so the software knows the

battery is fully charged.

21 As read when the bike is not moving since this is a better indication of the available energy level.

R. G. Sparber January 11, 2023 Page 42 of 53

When it is time for a ride, go from Off to Run. The

RemainingEnergyCount starts out at the

FullChargeCount, and will decrement as

ampere-hours are used.

System Status Flash Sequences
Flash sequences are used to indicate when the battery powering the circuit is low,

when we are done with Initialization, and when we are done with Calibration. They

do not look anything like the eGas Gauge flashes. This, hopefully, minimizes

confusion.

Initialization and Calibration only take a few milliseconds but, to give the user

plenty of time to react, I stretch this out to many seconds. I do not want the user to

accidentally do a Calibration since it will wipe out their hard-earned data related to

the battery’s capacity.

The Power Up Strategy
When the toggle switch is moved from Off to Run, a circuit battery test is

performed. If the AA batteries are weak, you will see twenty seconds of short

flashes. Then normal operation will be attempted. If these batteries are weak, the

LEDs will be dim.

After the battery test, the eGas Gauge will run while the user rides.

The Power Down Strategy
The bike is drawing near zero current when the eGas Gauge is powered up. The

start-up software records this current as a count and adds 2. The resulting number

is the power-down threshold. When the measured current falls below this threshold

for more than 10 minutes, the ATTiny-85 is put into low-power mode, and both

LEDs are turned off. The resulting current drain is about 0.5 microamps. The

batteries that power the eGas Gauge will likely leak before this amount of current

runs them down.

R. G. Sparber January 11, 2023 Page 43 of 53

EEPROM Strategy
I would like to save the remaining energy count to EEPROM just before the toggle

switch is set to Off so the data will be available the next time the circuit is turned

on. That would be one save to EEPROM per eBike trip. I don’t know how to

predict when power is about to be lost without adding a lot more hardware22.

At the other extreme, I could save to EEPROM every second. This is a bad idea

because the EEPROM will wear out after 100,000 writes. In 27 hours, I would

have to replace the ATtiny85.

My compromise is to save data to EEPROM often enough that it last at least 5

years. This is
100,000 𝑤𝑟𝑖𝑡𝑒𝑠

5 𝑦𝑒𝑎𝑟𝑠
 = 20,000 writes per year or 384 writes per week. Say I

ride 3 times a week. This is
384 𝑤𝑟𝑖𝑡𝑒𝑠 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘

3 𝑟𝑖𝑑𝑒𝑠 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘
 = 128 writes per ride. Assuming

each ride is 1.5 hours, this is
128 writes per ride

1.5 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑟𝑖𝑑𝑒
= 85 writes per hour or

85 𝑤𝑟𝑖𝑡𝑒𝑠

1 ℎ𝑜𝑢𝑟
 ×

1 ℎ𝑜𝑢𝑟

60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
= 1.4 𝑤𝑟𝑖𝑡𝑒𝑠 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. I will do one write per minute,

so the EEPROM should last more than 7 years.

When I turn the circuit off, I might lose one minute of data. On average, it will be

½ minute of data. Since the bike will be stopped, most of this time will be with no

current flowing, so this data loss will have a minimal effect on the total count.

When I do write to EEPROM, I first read what is stored. If what I am about to

write is the same as is stored, I do not do the write. This further saves EEPROM

cycles.

I could write a more elaborate EEPROM function that does a write-read check. If

the byte read back does not equal the byte written, it could move to a previously

unused address. I guess that in 7 years, I will want a new eBike with an accurate

energy level display.

22 This could be done by having the user request power down and then have the software pull the plug after the

EEPROM saves.

R. G. Sparber January 11, 2023 Page 44 of 53

The Medium-Level Software View
A word about my programming style: I write so people can understand. This

means I am generous with my comments plus with the naming of things. All

constants and variables end with their data type. I have found that this heads off

many stupid bugs related to mixing data types. For example, I have

RemainingEnergyCountLong. This variable means Remaining Energy Count, and

it is a long. I hope you say “duh.” IMHO, that is a damn sight better than calling it

“stuff1.” My subroutine names are equally descriptive.

Arduino code is organized into the setup() subroutine that only runs at power-up

and the loop() subroutine that runs repeatedly.

The subroutine setup() is where I look to see if Initialize is active at power-up. If it

is, I initialize the RemainingEnergyCountLong plus its EEPROM copy to

FullChargeCountLong.

If Initialize is not active, I read EEPROM and use it to initialize

RemainingEnergyCountLong.

Here is where things get a bit tricky. By writing to

hardware registers, I can measure the DC offset error

of the amplifier. The input is set to 0, and the ADC

tells me what it sees. This is the offset that is stored in

ADC_OffsetLong. When I’m measuring the eBike’s

current, I subtract this offset. This removes the offset

from my readings.

Before I leave setup(), I configure the amplifier for

normal operation.

When setup() completes, I start loop(). As the name implies, we execute from the

top of loop() to the bottom and then repeat. How long this takes depends on the

included code.

R. G. Sparber January 11, 2023 Page 45 of 53

On every cycle of loop(), I call Time(). This is where I keep all timers used by

other subroutines. Communications are via flags. Each timer sets a flag to indicate

its time is up and then starts timing all over again. The subroutine that uses the flag

clears it.

When the Time To Sample flag is true, which happens every second, we

1. Read Current As Count

2. Update Energy Count

3. Translate Remaining Energy Count To the number of flashes related to

quarters and which LEDs to drive to indicate bottom-middle-top.

4. Set the Time To Sample flag to false

Time() will set the Time To Sample flag true one second since the last time it set it

true.

Every minute, we update the EEPROM with the remaining energy count.

The Low-Level Software View
I refer you to the code for this level of understanding. You should find the design

familiar if you understand the high and medium-level software views.

I have included an EEPROM error reporting function. When we write to the

EEPROM, the data is always read back. A mismatch generates an error that is

reported by toggling the LEDs 100 ms on each.

If you find a comment confusing or wrong, please let me know so I may correct it.

You can find my code at Rick.Sparber.org/eBikeGauge.ino.

Configure the IDE for an ATtiny85 with an internal 8 MHz clock.

This code has only been thoroughly tested on an ATtiny85. I know that it will not

run on the Pro Micro because the hardware registers are laid out differently, plus it

is not possible to access all needed inputs.

At the time of this writing, my program uses 56% of the available program store,

14% of global variable memory, and 3% of the data EEPROM. There is plenty of

room for new features.

R. G. Sparber January 11, 2023 Page 46 of 53

The First Field Testing
I rode until the ENERGY BAR read one bar with the bike stopped for 1 minute.

The display showed 42.2 to 42.3 volts. I’ll call this Empty.

This data was taken with an LED interface that flashed out the state of charge. It

had a resolution of 16th of full scale.

Calibration
After moving the toggle switch to Calibration and back to Run, I rode home. The

eGas Gauge now knows how many counts have to be decremented as the battery

goes from Full to (user-defined) Empty.

I again fully charged the bike’s battery and did an Initialization.

Test Ride
My goal was to run the battery down and record all status updates. My ride was

over a variety of terrains and at a variety of speeds.

I drained the battery over three rides. The tier numbers are related to an old user

interface.

R. G. Sparber January 11, 2023 Page 47 of 53

First Set of Data
Time

minutes

Total

minutes

First

tier

Second

tier

Comments

0 0 4 0 Full

 15 15 4 0 at 7/8

 17 17 3 4 at 7/8; zone change

30 30 3 2 at ¾; end of ride

 0 30 3 2 at ¾; New ride

14 44 2 4 at 5/8; 3.8 miles

30 60 2 2 at ½; 7.8 miles; 46.9V; ENERGY BAR at ½

 45 75 2 0 at 3/8; 11.6 miles; 46.1V

60 90 1 3 at 5/16; 14.1 miles; 45.7V; end of ride

 Analysis of the First Set of Data
Focusing on the data highlighted in green, I can calculate an esimated range at each

point in my ride. This is done by taking the distance ridden and dividing it by the

change in remaining Ah.

Remaining Ah Miles ridden Estimated range, miles

3/4 0 -

5/8 3.8 30

1/2 7.8 31

3/8 11.6 31

5/16 14.1 32

The estimated range at the start of the ride was 6% lower than the estimte at the

end of the ride. This says more about the consistency of the conditions during the

ride. Still, this is nice but surprising result.

When the eGas Gauge signaled we were at ½, the ENERGY BAR showed the

same thing after the bike sat for 2 minutes. This is confirmation that the two

systems agree. So if you are willing to stop your bike for a few minutes before

reading the ENERGY BAR, it is as accurate as the eGas Gauge. Of course, the

benefit of the eGas Gauge is that you do not have to stop.

R. G. Sparber January 11, 2023 Page 48 of 53

Graphing the remaining ampere-hours over time, I see:

From 60 to 75 minutes, I was going downhill

so I used fewer ampere-hours. This is why

the rate of consumption leveled off a little.

Between 30 and 90 minutes, I rode 14.1

miles and used 7/16th of the capacity. If the

terrain was representative of the entire ride, I

could expect to go 14.1 ×
16

7
= 32 miles on

a charge. I could also expect to ride for (90 − 30) ×
16

7
= 137 minutes on a

charge. This means I should be able to ride for another 47 minutes. Time for

another ride!

R. G. Sparber January 11, 2023 Page 49 of 53

Second Set of Data
Time

minutes

Total

minutes

First

tier

Second

tier

Comments

0 90 1 3 at 5/16; New ride; 46.4V

15 105 1 1 3.5 miles; 45.1V

25 115 0 5.1 miles; 44.6V

31 121 0 44.6V

40 130 7.5 miles; 43.8V shutdown but recovered to 44.0V

50 140 0 9.1 miles; 42.7V

55 145 0 9.7 miles; 41.4V; toggled and heard Empty

Analysis of the Second Set of Data
When the eGas Gauge indicated Empty, the display showed 41.4 to 42.7 volts.

40.6V corresponds to 10%, and 41.3V corresponds to 15%, yet it clearly is close to

0. Also, note that the Controller shut down at 44.0V, which corresponds to 35%.

During Calibration, I defined Empty as 42.2 to 42.3 volts.

R. G. Sparber January 11, 2023 Page 50 of 53

The Second Field Testing
This time, I ran the battery down until the cruise control dropped out while

drawing about 12 amperes. Due to improvements in my instrumentation, I was able

to directly read the EEPROM. I had drawn 362,353 count-seconds. My estimate of

the capacity of the battery was 448,402 count-seconds. This means that my

definition of Empty is when the battery has about 20% left in it. For the best life

out of the battery, this is a good place to be.

I also read the half AA battery voltage. When compared to directly measuring this

voltage, I found that the ATtiny85 reading was only 2.9% low. This is within the

±10% tolerance of the voltage divider.

R. G. Sparber January 11, 2023 Page 51 of 53

The Third Field Test
This time, I was using the two LED

interface. I recorded the miles driven

each time I saw a change in the LED

state. The terrain had many hills,

some wind, and I was running

PAS3.

The dashed line is the best fit. For

the first 3 miles, I used slightly more

energy than the best fit. This was

mostly uphill. Then from about 3 to

9 miles, I was using slightly less

energy. This was mostly level

ground. I turned around on the trail at 7 miles. From 9 to 14 miles, I was mostly

going downhill.

I found it interesting that the energy consumption per mile was almost constant as I

rode a closed loop. This implies that terrain and wind are secondary factors. Speed

is the primary factor that determines energy consumption.

Going from 16/16th down to 6/16th is a change of 10/16th. This got me 13.9 miles

Extrapolating to 0, this says I have a range of
13.9 𝑚𝑖𝑙𝑒𝑠

(
10

16
)

= 22 miles with PAS3.

A few days later I ran the same course but at PAS2. Using the same process, I

estimate that the range is 41.2 miles.

R. G. Sparber January 11, 2023 Page 52 of 53

Conclusion
The eGas Gauge did a better job of predicting when the battery was Empty than the

voltage. During Calibration, I defined Empty when the voltage was around 42.2V,

yet, with some resting, the voltage was around 41.4V to 42.7V. I think this reflects

the variability in the voltage readings and not error in the eGas Gauge. When I saw

0 on the display, there wasn’t much left in the battery.

The first set of field data demonstrated the value of using the change in Ah to

predict the range. When the rider gets to the middle of ¾, multiply the trip

odometer reading by 4 to get the estimated range. Accuracy depends on having a

consistent set of riding conditions. If speed, wind, terrain, or energy contribution

from the rider changes, this estimate will be off.

Final Comments
The ATtiny85 is not an easy place to do debugging. Instead, I first ran the code on

a Pro Micro and used print statements and TeraTerm to see what was going on.

When all looked right, I changed the code to run on the ATtiny85. This involved

changing most of the writes and reads to hardware registers. Although the Pro

Micro is a far more capable system, it cannot take differential readings or perform

offset cancelation. Therefore, there was some painful debugging necessary on the

ATtiny85.

Far too late in the debugging phase, I brought out my SkinnyPrint hardware and

software. It let me debug by using single byte print statements. Although cryptic,

this did make the work much easier.

I strive for simple hardware designs. As I look at the schematic, I am happy to see

so few components and such a low price. The complexity of the software doesn’t

bother me at all. My goal is to have a design with an acceptable User interface with

a readout accurate enough for the application.

https://rick.sparber.org/SPrint.pdf

R. G. Sparber January 11, 2023 Page 53 of 53

Acknowledgment
Thanks to Eduardo for suggesting the pointer to programming the ATtiny85.

I welcome your comments and questions.

If you want me to contact you each time I publish an article, email me with

“Subscribe” in the subject line. In the body of the email, please tell me if you are

interested in metalworking, software plus electronics, kayaking, and/or the Lectric

XP eBike so I can put you on the right distribution list.

If you are on a list and have had enough, email me “Unsubscribe” in the subject

line. No hard feelings.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

mailto:Rgsparber.ha@gmail.com

