
R. G. Sparber December 10, 2020 Page 1 of 10

Programming an Arduino In a Realtime
Environment, Version 1.0

By R. G. Sparber

Protected by Creative Commons.1

Disclaimer: Although I have worked with many talented professional programmers

and Computer Scientists over the years, I have only a little formal training in

software. This article presents how I deal with real-time and is certainly not the

only or best way to do it. I welcome comments from people with more knowledge,

like Dave Kellogg.

Conclusion
The software that runs on an Arduino compatible processor can handle real-time

events without resorting to using interrupts.

Background
Arduino software is structured into two subroutines. If code is to run

only at startup, it is placed within startup(). If the code is to run one or

more times after startup, it goes into loop().

The subroutines within loop() are called in sequential

order. When the last one completes, we begin the first

one again.

How often a given subroutine is called depends on how

much time is consumed by the other subroutines within

loop(). If the code is only doing computations, time is

usually not important.

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

R. G. Sparber December 10, 2020 Page 2 of 10

The Problem

D() is interacting with the outside world.

It must look for

button pushes.

If loop() cycles very fast, A() will see all three button pushes. The

user will experience a reliable system.

 What happens if A() only runs

periodically? The user pushes the button

for the first time. A() ran before and after

the event, so it misses it. The user gets no

response, so she pushes it again. A() ran

just before the push, so again misses it.

Out of frustration, the user pushes the

button a third time. By luck, A() was running while the button was being pressed,

so sees the event.

As far as the user is concerned, this is one flaky system. As far as A() is concerned,

all is fine. The user only pushed the button once.

 What is going on? A(), B(), and C()

all take 1 millisecond to complete

but D() takes 500 to 2000

milliseconds. As viewed from the

outside world, A’s run time is sliding

around, and it isn’t looking at the

button often enough. It is the victim

of D() being a real-time hog.

R. G. Sparber December 10, 2020 Page 3 of 10

The button push is called an asynchronous event relative to A(). When the button

push lines up with A() running, the event is detected. Otherwise, it never happened

as far as A() is concerned.

A standard way to deal with such asynchronous events is to

set up the Arduino, so the button push triggers an interrupt.

At that moment, we stop executing the “base level” code and

jump to interrupt level code. A flag can be set to say the

button had been pushed, and then we jump back to the

baseline code.

This is a good solution if there aren’t too many external

events, and the interrupt level code doesn’t take too long to

run.

Life takes a decided turn for the worse when bugs are caused

by the interaction of the base level code and the interrupt

level code. These bugs are driven by the button push, so they

occur at random places in the base level code. This makes

them extremely hard to find.

By avoiding interrupt level code, the software behaves predictably. We just need

each subroutine within loop() to behave themselves and not be a real-time hog.

This is easier said than done.

Although delays due to real-time hogs tend to vary, I will illustrate the problem

with a fixed delay.

A()

 Line 1

 Line 2

B()

 Line 1

 Line 2

Line 3

C()

 Line 1

 →interrupt

 Line a

 Line b

 

 Line 2

D()

 Line 1

 Line 2

R. G. Sparber December 10, 2020 Page 4 of 10

Within D(), I need to run some code, wait 1000 milliseconds,

and then run more code. This delay stops the execution of

loop(), which causes all of the subroutines to shift in time.

A()

 Line 1

 Line 2

B()

 Line 1

 Line 2

Line 3

C()

 Line 1

 Line 2

D()

 Line 1

 delay(1000)

 Line 2

R. G. Sparber December 10, 2020 Page 5 of 10

A Solution
High-Level View

The first piece of the puzzle is to create a new subroutine that I call

Time(). It keeps track of real-time and communicates with the rest of

the code via flags.

Time() can contain as many timers as needed. They all work the same way:

1. When a client subroutine wants to start their timer, they set a Timer

Running flag.

2. This timer sees the flag is true and starts a timer based on the Arduino’s

hardware real-time clock.

3. Every time the timer code runs, it checks the time.

4. When the specified interval completes, it clear the flag.

The client subroutine checks this flag each time it runs, so it knows when the

time is up.

versus

Let's walk through this logic in a little more detail.

Time()

A()

B()

C()

D()

Time()

A()

B()

C()

D()

 If Timer Running true,

return.

If flow control flag is

false, set Timer Running true
and then execute Line 1.

If flow control flag is true,

set flow control flag false

and then execute Line 2.

A()

 Line 1

 Line 2

B()

 Line 1

 Line 2

Line 3

C()

 Line 1

 Line 2

D()

 Line 1

 delay(1000)

 Line 2

R. G. Sparber December 10, 2020 Page 6 of 10

In setup(), we set the Timer

Running and flow control flag to

false.

When we call D() for the first time,

the Timer Running and flow

control flag are false. We execute

Line 1, which was before the

delay(1000) function. Rather than

being a real-time hog, we set

Timer Running to true, which

will tell the timer within Time() to

record the current real-time and

start looking for when the timed

interval is up. It then sets the flow

control flag to true. This will signal to D() that we should start execution after Line

1. We then return from D().

While the timer is running, Timer Running is true. Each time we enter D(), we

just return.

When the timed interval has concluded, the timer sets the Timer Running to

false.

The next time D() runs, it sees that the Timer Running is false so it checks the

flow control flag. It was set true, so we skip Line 1. Then we set the flow control

flag to false in preparation for the next time we run D(). And finally, we execute

Line 2.

Time()

A()

B()

C()

D()

 If Timer Running true,

 return.

If flow control flag is

false, execute Line 1, set

the Timer Running true, set

the flow control flag to

true, and return.

If flow control flag is true,

set flow control flag false

and then execute Line 2.

R. G. Sparber December 10, 2020 Page 7 of 10

The Code
For the timer function, I define TimerRunning as false, BeginTimer as true, and

TimeLimit as 1000.

In Time() I will have

if(TimerRunning == false){

return;

}else{ //timer is running

if(BeginTimer){//at beginning of interval

StartTime = millis();//initialize start time

BeginTimer = false;//stop reinitializing

Return;

 }

if((millis() – StartTime) >= TimeLimit){//interval over?

 TimerRunning = false;//signal calling subroutine

BeginTimer = true;//prepare for next start

 Return;

}

}

To recap: when D() is run for the first time, it executes Line 1 and then returns.

After the specified interval, it executes Line 2. Then it clears all flags in

preparation for executing Line 1 again the next time D() is called.

void D(){

if(TimerRunning)return;

if(FlowControlFlag == false){

 Line 1;

 TimerRunning = true;

 FlowControlFlag = true;

 Return;

}else{

 FlowControlFlag = false;

 Line 2;

}

}

R. G. Sparber December 10, 2020 Page 8 of 10

Test Code
 I placed diagnostic print statements2 in all subroutines. Each line displays the

subroutine, line number, and a time stamp.

Subroutines A, B, and C only contain diagnostic print statements. D has three of

them:

D(): 70 is start of D()

D(): 79 executed code before 1000 ms

delay runs

D(): 91 executed when code after delay

runs

2 DTFA.pdf (sparber.org)

https://rick.sparber.org/DTFA.pdf

R. G. Sparber December 10, 2020 Page 9 of 10

Test run 1
A 200 ms delay was added to loop() to reduce the number of diagnostic prints.

Note: the line numbers are off from the above listing.

A(): 44. TS: 0

B(): 52. TS: 0

C(): 60. TS: 1

D(): 69. TS: 1 first time D() runs

D(): 76. TS: 1 executed code before 1000 ms delay

A(): 44. TS: 102 subtract out the delay(100) and A() runs every 2 ms

B(): 52. TS: 103

C(): 60. TS: 103

D(): 69. TS: 104 D() doesn’t run because timer is running

A(): 44. TS: 204

B(): 52. TS: 204

C(): 60. TS: 205

D(): 69. TS: 205 D() doesn’t run because timer is running

…

A(): 44. TS: 1019

B(): 52. TS: 1019

C(): 60. TS: 1020

D(): 69. TS: 1020 D() doesn’t run because timer is running

A(): 44. TS: 1121

B(): 52. TS: 1122

C(): 60. TS: 1122

D(): 69. TS: 1123 start of D() Time() clears 1000 ms flag

D(): 86. TS: 1123 executed code after 1000 ms delay

A(): 44. TS: 1223

B(): 52. TS: 1224

C(): 60. TS: 1224

D(): 69. TS: 1225 start of D()

D(): 76. TS: 1225 executed code before 1000 ms delay

…

D(): 69. TS: 2245

A(): 44. TS: 2345

B(): 52. TS: 2346

C(): 60. TS: 2346

D(): 69. TS: 2347

D(): 86. TS: 2347 executed code after 1000 ms delay

Conclusion

A(), B(), and C() each run every 1 to 2 ms. D() runs every 1000 ms plus the 200

ms added to slow down loop().

R. G. Sparber December 10, 2020 Page 10 of 10

Test Run 2
200 ms delay removed; only print from D() before and after 1000 ms delay.

D(): 78. TS: 0 code before 1000 ms delay runs

D(): 88. TS: 1001 code after 1000 ms delay runs

D(): 78. TS: 1001 code before 1000 ms delay runs

D(): 88. TS: 2001 code after 1000 ms delay runs

D(): 78. TS: 2001 code before 1000 ms delay runs

D(): 88. TS: 3001 code after 1000 ms delay runs

D(): 78. TS: 3001 code before 1000 ms delay runs

D(): 88. TS: 4001 code after 1000 ms delay runs

Conclusion

The 1000 ms delay is evident.

I welcome your comments and questions.

If you want me to contact you each time I publish an article, email me with

“Subscribe” in the subject line. In the body of the email, please tell me if you are

interested in metalworking, software plus electronics, kayaking, and/or the Lectric

XP eBike so I can put you on the right distribution list.

If you are on a list and have had enough, email me “Unsubscribe” in the subject

line. No hard feelings.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

mailto:Rgsparber.ha@gmail.com

