
R. G. Sparber July 13, 2020 Page 1 of 8

Optical Based Debugging Tool,
Version 1.1

By R. G. Sparber

Protected by Creative Commons.1

Want to jump to the punchline? Then see

https://www.youtube.com/watch?v=BColki2Hrzo

The Problem

The easiest way to debug code running on a

processor is with a full-featured software

development environment. It shows you the

value of all variables and the path taken as

the code executes.

I don’t have one of those.

 Almost all of the time, I use print

statements to tell me these same

things2. These statements are

generated with a single keystroke

and then populated with any

variables I want to see. The

subroutine and line number are

automatically supplied by the

compiler. It calculates a timestamp and prints that too. Of course, this scheme

depends on having a terminal emulator to receive all of these serial prints.

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.
2 See https://rick.sparber.org/DTFA.pdf

https://www.youtube.com/watch?v=BColki2Hrzo
https://rick.sparber.org/DTFA.pdf

R. G. Sparber July 13, 2020 Page 2 of 8

Once in a while, I find myself in an environment where I cannot connect a terminal

emulator. Then I have to get creative just to squeeze out, say, 16 different

notifications. As with any diagnostic code, I must also minimize my realtime

impact.

The Solution

My favorite Arduino compatible is the Sparkfun Pro

Micro. It has three LEDs on it. The red one indicates

power, so there is no way to control it via software.

But the yellow and green LEDs are up for grabs.

Usually, they show the state of the serial port.

Thanks to Steven Bush, I learned how to control them from my code3.

Two LEDs may not seem like much, but they provide what I need. Think of the

yellow LED as my data and the green LED as my clock. I can flash these LEDs to

convey a four-bit quantity. My old brain can remember four bits but would have

trouble with eight. If you can handle it, the code can easily be changed to send a

full byte.

3 See https://www.electronicsweekly.com/blogs/engineer-in-wonderland/arduino-micro-direct-

access-board-leds-2017-08/

https://www.electronicsweekly.com/blogs/engineer-in-wonderland/arduino-micro-direct-access-board-leds-2017-08/
https://www.electronicsweekly.com/blogs/engineer-in-wonderland/arduino-micro-direct-access-board-leds-2017-08/

R. G. Sparber July 13, 2020 Page 3 of 8

I need a start symbol before I sent my bits. I do this by

lighting the data LED without the clock LED once.

To send a logic one, I light both the clock and data LEDs.

To send a logic zero, I light just the clock LED.

The delimiter between symbols is having neither LED on. It

is included at the end of start and each bit.

After the last bit has been transmitted, I append the stop

symbol, which is the yellow LED flashed twice.

The entire sequence looks like this:

[start] [bit n] [bit n-1] … [bit 0] [stop]

R. G. Sparber July 13, 2020 Page 4 of 8

There are two time intervals. The state active delay is the time that the LEDs are

being read. The inter-state delay is the time between symbols. I found that having

them equal works well.

You have a choice of subroutines:

• FlashNibble(x) to send the lower four bits of a byte

• FlashByte(x) to send a byte

• FlashUint(x) to send two bytes

• FlashUlong(x) to send four bytes

If you want to build your own Flash subroutine:

• StartSymbol()

• SendBits(DiagCode, n) for n less than 33 bits

• StopSymbol()

There is one more piece to the puzzle: minimizing realtime.

To minimize the effect on the program being debugged, I cannot have complexity

in my software tool. Therefore, I have simple delays, as needed, to ensure the

LEDs are on long enough to be seen.

The key to minimizing these delays is to ask the question – who sees the LEDs? Or

what sees them?

If I look at these LEDs with my unassisted eye, the

flash rate can’t be much faster than one second per

bit, or it becomes a blur. That could severely upset a

realtime sensitive program.

R. G. Sparber July 13, 2020 Page 5 of 8

But I own a smartphone with a built-in camera. One of

the features is “slo-mo” with manual playback. It will

take 240 frames per second, which means one frame

every 4.2 milliseconds. Then I can view one frame at a

time.

I am using the iOS app called InShOt, which lets me

stop at each frame. This means that I can specify a 9-

millisecond interval to show a state plus 9 milliseconds

between states and will be guaranteed to see at least one

frame for each state. I can, therefore, send a byte in 198

milliseconds.

I am aware that some Android phones can capture up to

1000 frames per second. That will permit the

transmission of a byte in about 50 milliseconds.

The Code
If you are not running it on a Pro Micro, the logical pin names associated with

LEDs may have to change.

int DataLED = 17; // The RX LED has a defined Arduino pin

int ClockLED = 30; // The TX LED has a defined Arduino pin

unsigned int InterStateDelayMsUint = 9;

unsigned long StateActiveIntervalMsUint = 9;

unsigned long StartForTimeStampULong = millis();

void setup() {

pinMode(DataLED, OUTPUT); // Set RX LED as an output and call it the Data

LED which is yellow

pinMode(ClockLED, OUTPUT); // Set TX LED as an output and call it the Clock

LED which is green

}

R. G. Sparber July 13, 2020 Page 6 of 8

void loop(){

//test suproutine calls

FlashNibble(0xa);

//FlashByte(0b10101010);

//FlashUint(0b1010101010101010);

//FlashUlong(0b10101010101010101010101010101010);

delay (2000);

}

void FlashNibble(byte DiagCode){

StartSymbol();//single flash of data LED

SendBits(DiagCode, 4);

StopSymbol();//double flash of data LED

}

void FlashByte(byte DiagCode){

StartSymbol();//single flash of data LED

SendBits(DiagCode, 8);

StopSymbol();//double flash of data LED

}

void FlashUint(unsigned int DiagCode){

StartSymbol();//single flash of data LED

SendBits(DiagCode, 16);

StopSymbol();//double flash of data LED

}

void FlashUlong(unsigned long DiagCode){

StartSymbol();//single flash of data LED

SendBits(DiagCode, 32);

StopSymbol();//double flash of data LED

}

void StartSymbol(){

//single flash of just data LED

DataHigh();

ClockLow();

delay(StateActiveIntervalMsUint);//time to see start symbol

R. G. Sparber July 13, 2020 Page 7 of 8

DataLow();

ClockLow();

delay(InterStateDelayMsUint);//time in idle to separte start symbol from MSB

}

void StopSymbol(){

StartSymbol();

StartSymbol();

}

void SendBits(unsigned long data, byte NumberOfBits){

 //flash out the lower NumberOfBits

 unsigned long BitMaskUlong = 1;//so LSB is 1 and the rest are 0

 BitMaskUlong = BitMaskUlong << NumberOfBits-1;//shift the 1 over to the

MSB position for the data

 for(byte BitCount = 0; BitCount < NumberOfBits; BitCount++){

 if((data & BitMaskUlong) >> (NumberOfBits-1)){//first I set all but

the MSB to 0 and then shift it over to the right by NumberOfBits-1 so it is the

LSB. If this evaluates to 1, I call SendOne(). Else, SendZero().

 SendOne();

 }else{

 SendZero();

 }

 data = data << 1;//shift over 1 bit position to left because I'm sending MSB

first

 }

}

void SendOne(){

DataHigh();

ClockHigh();

delay(StateActiveIntervalMsUint);

DataLow();

ClockLow();

delay(InterStateDelayMsUint);

}

void SendZero(){

DataLow();

ClockHigh();

R. G. Sparber July 13, 2020 Page 8 of 8

delay(StateActiveIntervalMsUint);

DataLow();

ClockLow();

delay(InterStateDelayMsUint);

}

void DataLow(){

digitalWrite(DataLED, HIGH); // set the LED off

}

void DataHigh(){

digitalWrite(DataLED, LOW); // set the LED on

}

void ClockLow(){

digitalWrite(ClockLED, HIGH); // set the LED off

}

void ClockHigh(){

digitalWrite(ClockLED, LOW); // set the LED on

}

I welcome your comments and questions.

If you wish to be contacted each time I publish an article, email me with

“Subscribe” in the subject line. In the body of the email, please tell me if you are

interested in metalworking, software, or electronics so I can put you on the best

distribution list.

If you are on a list and have had enough, email me “Unsubscribe” in the subject

line.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

mailto:Rgsparber.ha@gmail.com

