
R. G. Sparber March 14, 2019 Page 1 of 19

Using Variables, Computation, GOTO, and
IF-THEN-ELSE G-code Commands,
Version 2.2

By R. G. Sparber

Protected by Creative Commons.1

 Different tasks require different tools. This is

why a well-equipped shop maintains a wide

variety of tooling. The same goes for our

knowledge of G-code. Often the automatically

generated G-code gets the job done just fine. But

once in a while, some manual adjustments must

be made. And then there are cases where the best

solution requires pure hand coding.

A powerful category of “tooling”, when hand coding, involves logical control

commands. This article discusses the use variable, computation, GOTO, and IF-

THEN-ELSE commands along with the concept of user-defined variables. An

example is presented that uses these commands to drill an array of holes.

My Centroid G-code information was taken from the M-Series Operator’s Manual

dated 9/14/16 chapters 11, 12, and 13. The intent is not to duplicate the entire

manual, only to pick out and expand on the immediately relevant bits.

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

R. G. Sparber March 14, 2019 Page 2 of 19

The example presented here drills a 3 by 3 array of holes

with an X-axis spacing of 1.000 inch and Y-axis spacing

of 0.500 inches. These values are easily changed. Not

very exciting.

But I can add a single line of code that will selectively

prevent any hole from being drilled. For example, I can

skip drilling the hole at X = 1.000 Y = 0.500.

Given this total freedom to place holes, I could

increment the spacing of the holes along the X-axis

exponentially. Notice how the X-axis spacing increases

as we move along this axis. I have kept the Y-axis

spacing constant although I did eliminate one hole in the

top row.

Given the computational power of G-code plus the logical tests presented here, you

are only limited by your imagination. Sure this can be done with CAD and a

G-code generator but it is so much faster and more flexible with hand coding.

R. G. Sparber March 14, 2019 Page 3 of 19

G-code Elements I Will Use
Centroid gives me 50 user definable memory locations, 100 through 149. A “#”
before the number identifies it as one of these locations. I can assign the number

0.060 to location 100 by writing

#100 = 0.060

Then I can use #100 like any other number. For example

#104 = 0.141 + #100

says to take 0.141 and add it to the value stored in memory location 100. Place the

result into memory location 104.

#104 = 0.141 + #100

 = 0.141 + 0.060

#104 = 0.201

I can embed arithmetic in commands by using [square brackets]. For example

Z [0.141 + #100]

says to take 0.141 and add it to the contents of memory location 100. Use the result

to set the Z position.

Z [0.141 + #100]

Z [0.141 + 0.060]

Z [0.201]

which is the same as saying Z 0.201. The cutter will move along the Z axis to

0.201 inches above our Z = 0.000 point.

R. G. Sparber March 14, 2019 Page 4 of 19

We also get a few control logic commands.

By using GOTO, we can jump to any defined line number. For example,

GOTO 101

When the program reaches this line of G-code, it will jump to line 101 which is

identified by having “N101” at the beginning of the line.

N101 G1 F1.0 Z 0.100

Line numbers are optional. If you are not going to jump to a given line, no need to

number it.

For example, we would execute Oink one, two, and three. Then

GOTO 101 would tells the interpreter to jump to line 101.

Quack one, two, and three would be skipped. Bark one would

be the next line of G-code executed. Two and three would

follow.

Line numbers can also be in any order. So line number 200 can come before

line number 100. They are just the way the interpreter identifies unique lines of

code.

Oink one

Oink two

Onik three

GOTO 101

Quack one

Quack two

Quack three

N101 Bark one

Bark two

Bark three

R. G. Sparber March 14, 2019 Page 5 of 19

Often we need to jump to different lines depending on current conditions. That is

where IF-THEN-ELSE comes in. The command format is

IF <expression> THEN <execute if true> ELSE <execute if false>

An “expression” is something that crunches on one or more values and produces a

true or false result. So, when I write

[#103 LE 0.500]

The square brackets tell the interpreter that logical or computational work must be

done.

I am telling the machine to compare the contents of memory location 103 with the

value 0.500. Those two letters tell the machine how to do the comparison.

LE means Less than or Equal to. So when the contents of memory location 103 is

less than or equal to 0.500, this bit of code generates a true result. Otherwise, out

pops “false”.

The contents of memory location 103 is to

the left of 0.500. This means it is less than

0.500 so [#103 LE 0.500] will evaluate to

being true.

In this next example, the contents of

memory location 103 is to the right of

0.500. This means it is greater than 0.500.

[#103 LE 0.500] will evaluate to being

false.

Our final example is when the contents of

memory location 103 equals 0.500. Recall

that the “E” in LE means “equal to”. So

when the contents of memory location 103

equals 0.500 the logic evaluates to true.

R. G. Sparber March 14, 2019 Page 6 of 19

I can write

N100 IF [#103 LE 0.500] THEN GOTO 101 ELSE GOTO 102

Lots going on here. First off, this is line number 100 because it starts with “N100”.
Then I have my IF-THEN-ELSE command. The <expression> is [#103 LE 0.500]

which will be either true or false depending on the number stored in memory

location 103. If true, we GOTO line 101. Otherwise, it is off to line 102.

We execute Oink one, two, and three

before reaching line 100. Depending

on the value stored in memory

location 103, we either jump to line

101 or line 102.

If [#103 LE 0.500] evaluates to true,

the jump is to line 101. There, Bark

one and two execute before we jump

to line 100.

If [#103 LE 0.500] evaluates to false, we jump to line 102. Notice that Quack one,

two, and three never execute.

The ELSE <execute if false> part is

optional. Without ELSE GOTO 102, a

false result will drop us down to the next

line and Quack one, two, three, Bark one,

Bark two are executed before we go back

to line 100. Note that line 102 is never

executed.

Oink one

Oink two

Onik three

N100 IF [#103 LE 0.500] THEN GOTO 101 ELSE GOTO 102

Quack one

Quack two

Quack three

N101 Bark one

Bark two

GOTO 100

N102 Enough with the animal sounds

Oink one

Oink two

Onik three

N100 IF [#103 LE 0.500] THEN GOTO 101

Quack one

Quack two

Quack three

N101 Bark one

Bark two

GOTO 100

N102 Enough with the animal sounds

R. G. Sparber March 14, 2019 Page 7 of 19

The last command I will introduce is both of supreme importance and essentially

not there. It is the semicolon. This character tells the G-code interpreter to ignore

what is coming next. It is of supreme importance because it lets me add comments

as needed to explain what is going on to other humans. It is essentially not there

because the G-code interpreter ignores the text and the machine sees nothing.

G0 Z 0.100; RETURN TO THE SAFE PLANE

These comments will be painfully obvious while you write the G-code and

invaluable when you have been away from it for a few months. Others will depend

on these comments too as they try to understand what was written.

Let's Do Something Useful

So much for theory. Time to write a G-code program that is useful: drill an array of

holes.

The first hole will be in the lower left corner. When

viewed on the mill table, this is left front. This hole

is defined as the origin which means X = 0.000 and

Y = 0.000.

I will also lower the drill until it just touches the surface and

then set Z = 0.000.

The program will drill a hole at the origin, then move

along the X-axis drilling holes until it completes the

row of 3 holes. Then it will move back to X = 0.000

while moving up to the next row along the Y-axis.

Again, holes will be drilled along the X-axis. This

pattern will repeat until all holes have been drilled.

R. G. Sparber March 14, 2019 Page 8 of 19

The Actual Code, Illustrated

;Drill an Array of Holes

G20 G90 G64 G40; sets up machine

;define parameters

#100 = 0.100; depth of each hole

Memory location 100 contains the depth of each

hole, 0.100 inches.

Side view.

#101 = 1.000; X increment

1.000 inches is the distance between holes along the

X-axis.

Top view.

#102 = 0.500; Y increment

0.500 inches is the distance between holes along the

Y-axis.

#103 = 0.000; X position initialized to the origin

Current position along X axis.

#104 = 0.000; Y position initialized to the origin

Current position along Y axis.

#105 = 2.000; distance limit along the X axis

R. G. Sparber March 14, 2019 Page 9 of 19

#106 = 1.234; distance limit along the Y axis

Note that the distance limit can be beyond the last

hole in the column or at the last hole.

#107 = 0.050; safe plane

Side view.

#108 = 5.0; drilling feed rate

;end of parameters

Now we start moving the cutter around.

G0 Z #107; go to the safe plane

G0 X0.000 Y0.000; then go to the first hole at

front left corner which has been defined as the origin.

Z0.000 is at the surface of the stock

R. G. Sparber March 14, 2019 Page 10 of 19

;drilling holes and moving The start of the logic.

N100 IF [#103 LE #105] THEN GOTO 101 ELSE GOTO 102

; test X position

;if at end of line along X-axis, start next row

Our current position along the X-axis is stored in memory location #103 is 0.000.

We compare it to our X-axis limit which is stored in memory location #105. It is

2.000. When we check if “0.000 is Less than or Equal to 2.000”, the answer is true.

This directs us to the first GOTO and we jump to line 101.

N101 G0 X #103 Y #104; move to new hole location

Our current position along the X-axis is 0.000. Along the

Y-axis the current position is stored in memory location

#104 and has the value 0.000 too. Therefore, this line is

interpreted as X0.000 Y0.000. That G0 says to move to

these coordinates at maximum speed. Since we were

already at (0,0), nothing moves this time around.

G1 F #108 Z [-#100]; drill down through

the stock to a depth found in memory location 100

and at the feed rate found in memory location 108

Memory location #108 contains 5.0 so we will drill down at 5.0 inches per minute.

Memory location #100 contains 0.100. The square brackets tell the interpreter there

is a calculation needed. I am taking the contents of #100 and multiplying it by -1.

The result is Z -0.100. Recall that I set Z 0.000 at the surface of the stock. So

-0.100 inches is below the surface. The entire line is saying to drill down at 5.0

inches per minute to a depth of 0.100 inches.

G0 Z #107; return to the safe plane

R. G. Sparber March 14, 2019 Page 11 of 19

Our first hole has been drilled as indicated by the

black dot.

#103 = #103 + #101; increment X axis pointer

#103 contains the value 0.000. #101 is our increment along the X-axis and is

1.000. This line is saying to take 0.000, add 1.000 and then save the result in #103.

In other words, advance the pointer for the X-axis to the next hole. We are drilling

the first row of holes so the Y-axis value does not change yet.

To recap, we drilled our first hole at (0,0) and then

updated the X-axis pointer to our next hole which will

be at

X = 1.000 and Y = 0.000.

GOTO 100; return to test of X-axis pointer

N100 IF [#103 LE #105] THEN GOTO 101 ELSE GOTO 102

; test X position

;if at end of line along X-axis, start next row

This time #103 contains 1.000 so we are asking if 1.000 is Less than or Equal to

2.000. Since it is true, we again jump to line 101.

N101 G0 X #103 Y #104; move to new hole location

Our X-axis pointer equals 1.000. Our Y-axis pointer is still 0.000. Therefore, this

line is interpreted as X1.000 Y0.000. We move to these coordinates at maximum

speed.

G1 F #108 Z [-#100]; drill down through

the stock to a depth found in memory location 100

and at the feed rate found in memory location 108

As on the first hole, we drill down at 5.0 inches per minute to a depth of 0.100

inches.

R. G. Sparber March 14, 2019 Page 12 of 19

G0 Z #107; return to the safe plane

Our second hole is now complete.

#103 = #103 + #101; increment X axis pointer

#103 contains the value 1.000. #101 is our increment along the X-axis and is

1.000. This line is saying to take 1.000, add 1.000 and then save the result in #103.

In other words, advance the pointer for the X-axis to

the next hole position at 2.000. We are drilling the first

row of holes so the Y-axis value has not changed yet.

GOTO 100; return to test of X position

N100 IF [#103 LE #105] THEN GOTO 101 ELSE GOTO 102

; test X pointer

;if at end of line along X-axis, start next row

This time #103 contains 2.000 so we are asking if 2.000 is Less than or Equal to

2.000. Since it is true, we again jump to line 101.

N101 G0 X #103 Y #104; move to new hole location

Our current position along the X-axis is 2.000. Along the Y-axis the current

position is 0.000. Therefore, this line is interpreted as X2.000 Y0.000. We move to

these coordinates at maximum speed.

R. G. Sparber March 14, 2019 Page 13 of 19

G1 F #108 Z [-#100]; drill down through

the stock to a depth found in memory location 100

and at the feed rate found in memory location 108

We drill down at 5.0 inches per minute to a depth of 0.100 inches.

G0 Z #107; return to the safe plane

All 3 of our holes in the first row have now been drilled.

#103 = #103 + #101; increment X axis pointer

#103 contains the value 2.000. #101 is our increment along

the X-axis and is 1.000. This line is saying to take 2.000,

add 1.000 and then save the result in #103. In other words,

advance the pointer for the X-axis to the next hole at

3.000. But wait, there is no hole needed at X = 3.000!

GOTO 100; return to test of X pointer

N100 IF [#103 LE #105] THEN GOTO 101 ELSE GOTO 102

; test X pointer

;if at end of line along X-axis, start next row

This time #103 contains 3.000 so we are asking if 3.000 is Less than or Equal to

2.000. Since it is false, we jump, for the first time, to line 102. No hole will be

drilled at X = 3.000. Instead, we detected that the end of the row has been reached.

;if at end of line along X-axis, start next line

R. G. Sparber March 14, 2019 Page 14 of 19

N102 #103 = 0.000; reset X-axis pointer to zero

No movement yet.

#104 = #104 + #102; increment Y-axis pointer

Our current Y-axis position is 0.000 which is stored in

#104. Our Y-axis increment between holes is 0.500 and

is stored in #102. We add 0.000 to 0.500 and store the

result into #104. So #104 contains 0.500.

This advances our Y-axis pointer to the second row. No

movement yet.

IF [#104 LE #106] THEN GOTO 100; if not done with rows,

continue sequence

Before we drill a hole, the program checks to see if this next row will be within the

specified Y-axis range. #104 is our current Y-axis pointer value and equals 0.500.

#106 is our Y-axis limit which is set to 1.234. The code is testing if 0.500 is Less

than or Equal to 1.234. Since it is true, we go to line 100.

Recall that line 100 is the start of the code that drills a

row of holes. When the last hole has been drilled, the X-

axis pointer value is incremented to a value larger than

the X-axis limit. This causes the program to advance the

Y-axis pointer value to the next row while it resets the

X-axis pointer value to 0.000. Then the cycle repeats.

R. G. Sparber March 14, 2019 Page 15 of 19

After the last row has been drilled, our Y-axis pointer is advanced to 1.500. Then

we return to our Y-axis test:

IF [#104 LE #106] THEN GOTO 100; if not done with rows,

continue sequence

This time, we are testing if 1.500 is Less than or Equal

to 1.234. Since it is not, we drop down to the next line

of code rather than going to line 100.

G0 X0.000 Y0.000; otherwise, done so

return to origin

I chose to return the cutter to the origin.

M00; stop for operator Done!

R. G. Sparber March 14, 2019 Page 16 of 19

Just the Code

On my mill, spindle speed is manually controlled so I have not included related

commands in this code.

;Drill an Array of Holes

G20 G90 G64 G40; sets up machine

;define parameters

#100 = 0.100; depth of each hole

#101 = 1.000; X-axis increment

#102 = 0.500; Y-axis increment

#103 = 0.000; X-axis pointer initialized to the origin

#104 = 0.000; Y-axis pointer initialized to the origin

#105 = 2.000; distance limit along the X-axis

#106 = 1.234; distance limit along the Y-axis

#107 = 0.050; safe plane

#108 = 5.0; drilling feed rate

;end of parameters

G0 Z #107; go to the safe plane

G0 X0.000 Y0.000; then go to the first hole at front left corner

which has been defined as the origin. Z0.000 is at the

surface of the stock

;drilling holes and moving

N100 IF [#103 LE #105] THEN GOTO 101 ELSE GOTO 102;test X-axis

pointer

;if at end of line along X-axis, start next row

N101 G0 X #103 Y #104; move to new hole location

G1 F #108 Z [-#100]; drill down through the stock at the

specified feed rate

G0 Z #107; return to the safe plane

#103 = #103 + #101; increment X-axis pointer

GOTO 100; return to test of X-axis pointer

;if at end of line along X-axis, start next line

N102 #103 = 0.000; reset X-axis pointer to zero

#104 = #104 + #102; increment Y-axis pointer

IF [#104 LE #106] THEN GOTO 100; if not done with rows, continue

sequence

G0 X0.000 Y0.000; otherwise, done so return to origin

M00; stop for operator

R. G. Sparber March 14, 2019 Page 17 of 19

Removing a Single Hole

We can remove a single hole by using what we have

learned so far. Our IF-THEN-ELSE statement can

identify the X-axis and Y-axis pointer value pair that we

want to skip.

IF [#103 EQ 1.000] THEN GOTO 300; see if X-axis pointer is

1.000. If so, check Y-axis pointer value

GOTO…; continue normal program
N300 IF [#104 EQ 0.500] THEN GOTO 301; see if Y-axis

pointer is 0.500. If so, skip drilling this hole but do

increment pointer(s)

GOTO…; continue normal program

I’ll leave it to the reader to weave this bit of logic into the program. You will need

to label an existing line N301.

R. G. Sparber March 14, 2019 Page 18 of 19

Exponential Hole Spacing
We have a line of code that deal with the X-axis pointer:

#103 = #103 + #101; increment X-axis pointer

It takes the constant stored in #101 and adds it to the

current X-axis pointer value to create the next pointer

value.

I could write

#103 = #103 * #101;

but there is a hitch. If the first X-axis pointer value is 0.000, then we will be stuck

there since any number multiplied by 0 equals zero. So let's change the program so

the first hole is at (1.000,0.000). This moves the origin to the left by 1.000 but has

no effect on the relative position of the array.

Our first X-axis pointer value will be 1.000. No reason to bother the first Y-axis

pointer so I left it at 0.

With #103 starting off at 1.000 and I will set #101 equal to 1.500, then the X-axis

pointer values will be

1.000 the initial value

1.000 * 1.500 = 1.500

1.500 * 1.500 = 2.250

2.250 * 1.500 = 3.375

Looking at the spacing of these holes, we have

1.500 – 1.000 = 0.500 between the first and second holes

2.250 – 1.500 = 0.750 between the second and third holes,

3.375 – 2.250 = 1.125 between the third and fourth holes.

The hole spacing is going up exponentially.

I’ll leave it to the reader to weave this bit of logic into the program.

R. G. Sparber March 14, 2019 Page 19 of 19

Acknowledgments
Thanks to Karl Harnish for his many suggestions to improve clarity.

Thanks to Tony Foale for suggesting advanced examples at the start of the article.

I welcome your comments and questions.

If you wish to be contacted each time I publish an article, email me with just

"Subscribe" in the subject line. If you are on this list and have had enough, email

me "Unsubscribe" in the subject line.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

mailto:Rgsparber.ha@gmail.com

