
R. G. Sparber April 15, 2020 Page 1 of 10

Global Positioning System and
Global Navigation Satellite System
Arduino Interface Software, Version 1.1

By R. G. Sparber

Protected by Creative Commons.1

Scope
Most Global Positioning System (GPS) and Global Navigation Satellite System

(GNSS) receivers can output the same format of data: NEMA 0183 "sentences."

You can get an overview at https://en.wikipedia.org/wiki/NMEA_0183. These

sentences are human-readable, but I found them devilishly hard to read with

software.

I chose to write interface software that provided a machine-readable output that

contains time and position information.

Software Approach
I did not try to be creative in my coding but did try to cover all possible fault cases.

The code contains expansive names for both variables and subroutines. Most lines

in the source file have comments which try to explain what is going on.

I designed the software to run on an Arduino Compatible from Sparkfun called the

Pro Micro. Given that the software only depends on having access to a UART, I

expect that it to run on many members of the Arduino family. The code is self-

contained and does not need any header files. It occupies about 6K of program

store plus 350 bytes of dynamic memory.

You can find the code at https://rick.sparber.org/GNSS.txt. Download it and

change the extension from .txt to .ino.

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

https://en.wikipedia.org/wiki/NMEA_0183
https://rick.sparber.org/GNSS.txt

R. G. Sparber April 15, 2020 Page 2 of 10

Contents
Scope .. 1

Software Approach .. 1

Hardware Overview ... 3

Software Overview .. 3

Hardware Details .. 3

Software Details ... 4

General Structure of Arduino Code ... 4

Global Variables .. 4

Setup() .. 4

Loop() ... 4

The Output Array ... 5

Error Detection ... 6

Software Interface to Hardware ... 7

Software Design Details (One step above the code) ... 7

NMEA Sentences ... 7

Preventing the Code From Hanging Up Due to a Hardware Failure..................... 9

R. G. Sparber April 15, 2020 Page 3 of 10

Hardware Overview
 Devices are available for surprisingly little money. A

simple Global Positioning System (GPS) 2 receiver,

including antenna, can be bought for around $4,

including shipping from China. They use the USA's

constellation of navigation satellites and is typically

accurate to ±10 meters.

For a lot more money, you can buy a GNSS device

that uses all of the USA's navigation satellites plus

ones from other countries. The more navigation

satellites involved, the better the accuracy. For example3, the SparkFun GPS-RTK2

Board - ZED-F9P costs $220 and is accurate to within a few millimeters.

Since GPS and GNSS devices are available with the same hardware interface and

the same output data format, I will refer to them both as GNSS.

Software Overview
Each time the user calls the GlobalNavigationSatelliteSystem()

subroutine, it updates the 16-byte array NavigationDataByte[]with time and

location data.

Hardware Details
The GNSS has three connections of interest to us:

• VCC – connect to +3.3V or +5V depending on the device

• TX – data comes out of the GNSS board

• GND – connects to ground

The GNSS's TX node connects to the Arduino's

RX node.

2 GNSS refers to a category of receivers. Global Positioning System is one of them.
3 As of 3/12/2020.

R. G. Sparber April 15, 2020 Page 4 of 10

Software Details
General Structure of Arduino Code
I assume you have an understanding of how to program an Arduino. The major

sections of the code are:

▪ Definition of all global variables.

▪ The setup() subroutine.

▪ The loop()subroutine.

▪ All subroutine definitions.

Global Variables
I take full advantage of the generous limit on variable name lengths. For example

GNSS_WaitingForDataTimeLimitMsULong

contains information on what the variable represents, any units, and the data

format:

GNSS Waiting For Data Time Limit – gives you a hint to its function.

Ms – the time limit is in milliseconds

ULong – this is an unsigned long which is good to know to avoid bugs related to

mixing data types

Setup()
Here is where I set up the serial link from the GNSS module. For the Pro Micro, it

is Serial1 while the USB ties to Serial.

Page 7 gives a few details on the parameters.

I also initialize the output array so all elements are equal to 205. This value tells

the user that the array has not been updated with GNSS data yet.

Loop()
Here is where you call the GNSS subroutine. It also contains GNSS_Timing(),

which prevents my software from hanging up if the hardware fails to respond in a

timely fashion.

R. G. Sparber April 15, 2020 Page 5 of 10

The Output Array
The NavigationDataByte[] array contains all GNSS data in a software

readable4 format:

Byte description

0 hours Coordinated Universal Time (UTC)

1 minutes (UTC)

2 seconds (UTC)

3 degrees (latitude)

4 minutes (latitude)

5 seconds (latitude)

6 0 for north, 1 for south

7 degrees (longitude)

8 minutes (longitude)

9 seconds (longitude)

10 0 for east, 1 for west

11 altitude MSB (byte 3)

12 altitude (byte 2)

13 altitude (byte 1)

14 altitude LSB (byte 0)

15 units: 0 for meters, 1 for feet

Note that all parameters are single bytes except altitude, which is four bytes.

If you view the raw bytes, they are in hexadecimal. If sent to a terminal emulator

via a print statement, they display as their decimal equivalent.

The user can look at the UTC to determine if they have the newest data.

The altitude is represented by four bytes that must be combined to form an

unsigned long. Your software can directly obtain this number by accessing the

variable AltitudeULong. It is updated every time the array is updated. The satellite

system sets the units associated with altitude. If using GPS, it is in feet.

4 Would you rather deal with the mess shown on page 5?

R. G. Sparber April 15, 2020 Page 6 of 10

Error Detection
I populate elements of the output array with values that cannot have come from the

GNSS.

InitializeNavigationDataByteArray() initializes all elements of the

array to 205 as part of setup(). If you see this value in the array, it means you

have not called GlobalNavigationSatelliteSystem()yet.

Any GNSS data that is null has the corresponding array element set to 200. For

example, at start-up, the GNSS hardware might not have yet determined latitude,

so would leave these parameters blank. The

GlobalNavigationSatelliteSystem()subroutine would then set bytes

3, 4, and 5 to 200.

If hours = 201, it means we timed out waiting for data from the GNSS and would

likely be a hardware problem and not a satellite availability issue.

If Hours = 203 it means we have failed to get a response from the GNSS too many

times5 since power-up, so gives up trying. The root cause is likely a hardware

failure.

After you have processed NavigationDataByte[], it would be a good idea to

initialize all elements to a unique value higher than 205 but less than 256. Such a

value alerts you to the fact that the subroutine has not updated the array.

5 See page 7 for details.

R. G. Sparber April 15, 2020 Page 7 of 10

Software Interface to Hardware
I have configured the UART for a data rate of 19,200 baud. It may be necessary to

change settings on the receiver to match this rate or to change the rate in the

software.

Looking at the software, you see

Serial1.begin(19200); //set up a communications path

between Arduino and GPS; Default of 8 data bits, 1 stop

bit, no parity or flow control is what the GPS needs.

Change the number, recompile the code, and download it to your Arduino.

Software Design Details (One step above the code)
You do not need to know any of the following to obtain GNSS data. I have

included it in case you wish to understand how the GNSS subroutine works.

NMEA Sentences
After satellite lock, the data flowing out of the GNSS device looks like this:

$GPVTG,,T,,M,0.049,N,0.090,K,A*27

$GPGGA,191415.00,3317.56663,N,11205.05235,W,1,07,1.39,367.0,M,-28.1,M,,*6F

$GPGSA,A,3,29,20,05,21,12,13,15,,,,,,3.28,1.39,2.97*06

$GPGSV,3,1,10,05,44,046,30,12,19,176,22,13,21,110,41,15,23,150,44*70

$GPGSV,3,2,10,20,14,222,31,21,29,282,31,26,13,316,18,29,69,350,27*70

$GPGSV,3,3,10,46,47,209,37,51,51,171,40*75

$GPGLL,3317.56663,N,11205.05235,W,191415.00,A,A*72

$GPRMC,191416.00,A,3317.56662,N,11205.05242,W,0.010,,220819,,,A*68

$GPVTG,,T,,M,0.010,N,0.019,K,A*2A

$GPGGA,191416.00,3317.56662,N,11205.05242,W,1,07,1.39,367.3,M,-28.1,M,,*6E

$GPGSA,A,3,29,20,05,21,12,13,15,,,,,,3.28,1.39,2.97*06

$GPGSV,3,1,11,05,44,046,30,12,19,176,22,13,21,110,41,15,23,150,44*71

$GPGSV,3,2,11,20,14,222,31,21,29,282,30,26,13,316,16,29,69,350,26*7F

$GPGSV,3,3,11,30,,,26,46,47,209,37,51,51,171,40*73

$GPGLL,3317.56662,N,11205.05242,W,191416.00,A,A*70

$GPRMC,191417.00,A,3317.56662,N,11205.05249,W,0.031,,220819,,,A*61

R. G. Sparber April 15, 2020 Page 8 of 10

These are called NMEA sentences and contain much information6. The sentence

we need that contains time, latitude, longitude, and altitude is the one starting with

$GPGGA:

$GPGGA,191415.00,3317.56663,N,11205.05235,W,1,07,1.39,367.0,M,-28.1,M,,*6F

When you call the GlobalNavigationSatelliteSystem() subroutine, it

starts to look for "$". Once found, it reads the next five characters and determines

if they form "GPGGA". Only then does it start to read and store the rest of the

sentence.

With the desired sentence in memory, the parsing can begin without having to

worry about keeping up with the data stream.

Here is the header plus the first data field

$GPGGA,191415.00,

Note that the number has a comma at the start and end of the field. These are

delimiters that used to identify the data. That is easy enough. The tricky part

involves the optional number to the right of the decimal. It is my understanding

that we could get

$GPGGA,191415,

or

$GPGGA,191415.xxx,

Where "x" can be any number, and there is an undetermined number of them.

This variation complicates the code because I must move across the field until I

reach a decimal or a comma. Then go back and figure out the value.

It is also possible to have a partially filled out sentence. Any null field has two

consecutive commas.

6 Do a web search on NMEA for more information. One hit is: https://www.gpsinformation.org/dale/nmea.htm

https://www.gpsinformation.org/dale/nmea.htm

R. G. Sparber April 15, 2020 Page 9 of 10

$GPGGA,165833.00,,,,,0,00,99.99,,,,,,*6C

This sentence has the time (165833.00, which is 16:58:33.00 UTC) but no latitude,

longitude, or altitude.

When the subroutine finds a null field, it puts 200 in the corresponding array byte.

This value can never be a valid field value and is unlikely to be due to a hardware

problem.

Preventing the Code From Hanging Up Due to a Hardware Failure
The GNSS code must periodically read a buffer that is filled by the GNSS. The

filling and the reading are not synchronized, so, likely, the code must first wait an

undefined number of milliseconds before the data arrives. The danger is that

without oversight, the code could become stuck waiting if the hardware suddenly

fails., Timers and flags prevent this condition.

The highest level of protection involves counting how many times we have tried

and failed to read GNSS data from the buffer. GNSS_RetryCounterByte

starts at 1 and is advanced each time we are about to retry. When this count

exceeds GNSS_RetryCountLimitByte, calls to

GlobalNavigationSatelliteSystem() are returned with Hours set to

203 to indicate that we have given up trying to read the GNSS. The count is only

reset to 1 if the Arduino's power is removed and restored.

R. G. Sparber April 15, 2020 Page 10 of 10

We wait up to 5 seconds for data to appear in the buffer. During this time, no other

code executes. Under non-fault conditions and at power-up, the delay should be no

more than 1 second.

If the code does not see data within

GNSS_WaitingForDataTimeLimitMsULong, it will not try again for

GNSS_DelayBeforeRetryOfReadingDataMsUInt.

At the time of this writing:

• RetryCountLimitByte is set to 2

• GNSS_DelayBeforeRetryOfReadingDataMsUInt is set to 60,000

milliseconds

• GNSS_WaitingForDataTimeLimitMsULong is set to 5,000

milliseconds

The above means we wait for 5 seconds and then stop looking for data. After 1

minute, we try again. After retrying twice, we give up on the GNSS.

I welcome your comments and questions.

If you want me to contact you each time I publish an article, email me with

"Subscribe" in the subject line. In the body of the email, please tell me if you are

interested in metalworking, software plus electronics, or both so I can put you on

the best distribution list.

If you are on a list and have had enough, email me "Unsubscribe" in the subject

line.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

mailto:Rgsparber.ha@gmail.com

