
R. G. Sparber November 30, 2018 Page 1 of 43

Flight Data Recorder Software
Description, Version 1.1

By R. G. Sparber

Purpose
This software measures up to 7 analog voltages1 plus the

battery voltage2 every two seconds3 for up to about 4 ½

hours. It can then output this data into a file readable by

Excel.

Although originally designed to record sensor outputs

during flight, it can be used anywhere long term monitoring

is needed. For example:

• measure temperature and/or humidity variation inside

 a package while it is being shipped

• run time of a water pump

• power usage in the home

1 0 to 5 volt
2 7 to 10 volts
3 This value can be changed. If set to one second, data is collected for up to 2 hours 16 minutes 30 seconds. If set to

60 seconds, it will run for 136 hours 31 minutes.

R. G. Sparber November 30, 2018 Page 2 of 43

Future Features
These features are candidates for later development.

1. User defined sample rate – at the present time the sample rate is set with a

constant within the software. It could be set with a user accessible command.

The longer the time between samples, the longer data can be collected.

2. Port disabling – the current design records data from all 7 ports plus battery.

By disabling unused ports, memory can be saved and the maximum run time

can be increased. For example, if only one port is needed we could increase

the run time by a factor of four.

3. Port data conditioning – as the time between samples increases, it becomes

more important to know what is going on between recorded data points. The

user could specify, on a port basis, if the intervening data is to be averaged,

searched for a maximum, or searched for a minimum. The data would be

read at least every 0.01 seconds.

R. G. Sparber November 30, 2018 Page 3 of 43

Contents
Purpose ... 1

Future Features ... 2

File Map ... 3

High Level Hardware Description ... 4

High Level Software Description .. 4

User’s Guide .. 5

Initial Run of Software ... 7

Software Overview ..15

Physical Environment Overview ...16

Computing Environment ..17

Command Details ...18

Software Details ...27

Adding Digital Sensors ..37

Acknowledgement ...42

Appendix: Tera Term ...43

File Map
The article you are reading:

https://rick.sparber.org/FlightDataRecorderSoftwareDescription.pdf

The Hardware Description:

https://rick.sparber.org/FlightDataRecorderHardwareDescription.pdf

The Software in a .txt File:

https://rick.sparber.org/FDR.txt

The Circuit Board Artwork:

https://rick.sparber.org/FDRartwork.pdf

https://rick.sparber.org/FlightDataRecorderSoftwareDescription.pdf
https://rick.sparber.org/FlightDataRecorderHardwareDescription.pdf
https://rick.sparber.org/FDR.txt
https://rick.sparber.org/FDRartwork.pdf

R. G. Sparber November 30, 2018 Page 4 of 43

High Level Hardware Description
The heart of the Flight Data Recorder is a Pro Micro Computer System. The Pro

Micro contains a computer with built-in data collection hardware plus memory to

hold the code even when power has been removed. It also has hardware which

permits the user to communicate via a standard micro-B USB cable. Collected data

is stored in a separate memory device that is also able to save all information when

power is removed. Board power comes from a 7.4 volt Li-Po battery. The Pro

Micro and associated external memory can be run from the USB cable plugged

into a laptop or PC.

High Level Software Description
 The software that runs on the Pro Micro is able to communicate with the user

while on the ground and collect data during the flight. If power is momentarily lost

(called a power hit) during the flight, the software will return to collecting data

when the power is restored.

R. G. Sparber November 30, 2018 Page 5 of 43

User’s Guide

Support Tools
You will need to have a program able to send your keystrokes to the Flight Data

Recorder plus display information from it. This data must also be able to be saved

in a file for later use by Excel. One such program is called Tera Term

(https://ttssh2.osdn.jp/index.html.en). See the Appendix for details on how to

install it.

Overview of Operation
Sorry to state the obvious, but the payload is

either on the ground or in the air. When on the

ground, we can do a Data Readout or be in

Pre-flight.

In the air, we can either be in Flight or be in

Flight after a power hit4. In both cases, we

are collecting data.

There is also an auxiliary function called

Time Calibration which takes place on the

ground.

4 A power hit is when power is disrupted. This causes the computer to restart the same way as when power has been

off for a long time.

https://ttssh2.osdn.jp/index.html.en

R. G. Sparber November 30, 2018 Page 6 of 43

Events or commands move us between these states. If in the Data Readout state,

the Prepare for flight command moves us to Pre-flight. Then power is turned off.

Just before launch we apply power and move to the Flight state. If there is a power

hit during flight, we move to the Flight with power hit state. Although unlikely, if

the data recording memory becomes full, we stop collecting data in order to

preserve what has already been recorded.

Once back on the ground, a Stop data

collection or a request to Output the data file

moves us to the Data Readout state. Note that

no data can be recorded except when in the

Flight or Flight with power hit states.

Not shown here is a diagnostic function which

can tell us the current state.

R. G. Sparber November 30, 2018 Page 7 of 43

Initial Run of Software
The software relies on a “control block” in order to know what took place before

power was previously lost. Think of it as a scrap of paper that has notes on it about

what job was last performed. When the Flight Data Recorder is powered up, it

looks here to see what, if anything, it was doing before power was removed.

If a new memory device is installed, the control block may need to be initialized.

The software detects this condition and attempts to correct it. Then you will see

EEPROM was initialized. Power Cycle

to complete task. If you get this

message again after the power cycle,

you have a hardware fault.

It will appear on the Tera Term window every 5 seconds until you turn the Flight

Data Recorder’s power off and then back on (“Power Cycle”).

The memory device is called an EEPROM which stands for Electrically Erasable

Programmable Read Only Memory. Data is stored on this device and will not be

lost when power is removed.

R. G. Sparber November 30, 2018 Page 8 of 43

Summary of Commands
All commands are entered from the PC’s keyboard in the Tera Term window. They

can be entered at any time except during clock calibration and immediately after

“P” (prepare for launch) has been entered.

Enter “M”.

 Flight Data Recorder

 by Rick Sparber

Version 1.0 will be a different version

M This menu.

D Display all port voltages and set the pre-flight state.

P Prepare for launch!

A Use only while in flight: Display all port voltages.

O Output data file.

S Stop data collection.

C Calibrate internal hardware clock.

H Diagnostic: Output control block.

T Diagnostic: Generate test pattern in data memory.

LED semaphore

1 flash per cycle - normal data collection

2 flashes per cycle - normal data collection after power disruption

3 flashes per cycle - memory locked either manually or because it is full

4 flashes per cycle - pre-flight

5 flashes per cycle - hardware or software fault detected

You enter any of the letters to get the associated action.

The external LED signals the system’s status with a pattern of ½ second pulses

followed by 5 seconds of darkness except when preparing to launch or calibrating

the timer. In these states, the LED will flash at a much higher rate.

Enter M5 at any time except when preparing to launch in order to see the available

commands.

5 or any character not listed as a valid command

R. G. Sparber November 30, 2018 Page 9 of 43

During Development
Enter “D” to Display all port input voltages plus the battery’s voltage. Expect to

see something like this:

Display of all Port Voltages and Pre-flight State

Battery: 7.40 volts

Port Voltage

==== =======

 0 5.00

 1 5.00

 2 0.09

 3 0.74

 4 0.82

 5 0.63

 6 4.99

Time calibration is now showing 1000 internal

millisecond counts per actual second.

If not between 900 and 1100, run time calibration.

Unterminated ports will read between 4.98 and 5.00 volts.

If the battery is not connected, you will see

Battery: disconnected

Sensors do not have 5V.

In place of the battery voltage.

R. G. Sparber November 30, 2018 Page 10 of 43

Before Starting to Collect Data
Enter “P” to Prepare for data collection. Software will respond with:

You asked to prepare to collect data. This will erase

all data. Are you sure? Y/N

Enter “Y” if you want to proceed or “N” to abort. Software will respond with:

Ready to collect data. Turn off power now.

No further commands will be accepted until after power

cycle.

The LED will flicker until power is turned off.

Disconnect the USB cable from the PC. Turn off power. Do not turn power back

on until ready to record.

R. G. Sparber November 30, 2018 Page 11 of 43

Starting to Record
1. Turn on power and see 0.2 second flash of the external LED.

2. Observe the external LED Flash Rate. All LED flashes are ½ second on and

½ second off. Between a series of pulses is 5 seconds off. Then the cycle

repeats.

a. Sunny Day6: One flash: signifies normal data collection is in

process.

b. Rainy Day7:

• Two flashes: If power was applied and removed after the

software was prepared to record, you will see two flashes.

Recording can proceed but you will have to look at the data

file to see if any other power disruptions occurred. The time

count resets to 0 minutes 0 seconds after a power hit.

• Three flashes: memory is full. This only happens when the

software has been collecting data for more than about 4 ½

hours given one sample every 2 seconds.

• Four flashes: in the pre-flight state. This says you did not

correctly set up for the flight state.

• Five flashes: a hardware or software failure has occurred.

This may prevent the collection of data but at this late date,

what do you have to lose?

6 Sunny Day means that all is working normally.
7 Rainy Day means that one or more things are not right.

R. G. Sparber November 30, 2018 Page 12 of 43

Live Data Display while Logging
If you wish to monitor the input voltages and have the PC connected via the USB,

you can enter “A” during the flight state to display the readings being stored. For

example:

Port readings will be displayed as they are collected.

Port0 Port1 Port2 || Port3 Port4 Port5 || Port6 battery

2.02 2.14 1.61 || 1.47 1.59 1.24 || 1.41 4.78

2.10 2.02 1.59 || 1.57 1.53 1.22 || 1.45 4.78

1.98 2.33 1.80 || 1.45 1.65 1.35 || 1.41 4.78

2.02 2.02 1.57 || 1.49 1.55 1.22 || 1.41 4.78

1.92 2.16 1.69 || 1.35 1.61 1.31 || 1.35 4.78

When data is being displayed, you can enter “A” at any time to print out the

heading again. For example:

Port readings will be displayed as they are collected.

Port0 Port1 Port2 || Port3 Port4 Port5 || Port6 battery

1.84 2.16 1.76 || 1.27 1.61 1.39 || 1.31 4.78

1.86 2.14 1.75 || 1.29 1.59 1.37 || 1.31 4.78

1.88 2.14 1.73 || 1.33 1.59 1.35 || 1.31 4.78

If you stop data recording, you will see

Data collection has been stopped. The EEPROM is now locked.

If you then enter “A”, you will see

Memory is locked so there is no new data to display.

R. G. Sparber November 30, 2018 Page 13 of 43

After Landing
1. Turn off the board’s power.

2. Turn on the PC and bring up Tera Term or similar program8.

3. Select the correct port.

4. Set Tera Term to log the incoming data stream to a .txt file.

a. Select the File tab

b. Click on the log… menu item

c. Select the path to this file and enter the File name with .txt at the end

d. Click Save

5. Enter “O” and the collected data will dump to both the screen and to the log

file. You will be able to see the first number in the line fly past. This is the

number of minutes into the flight.

6. Note: once “O” has been entered, the data memory is locked and becomes

read-only. It can be unlocked only by entering “P” which will erase all data.

7. When the screen stops scrolling data, move the cursor over the Tera Term

icon and click in Tera Term: Log.

8. Modify Filename and/or Fullpath if needed and then click Close.

9. Open Excel.

10. From within Excel, open the text log file you created. In the lower right

corner of the file open window, select All Files so it will display your .txt

(text) file.

11. Excel will take you through the conversion process. Your file uses commas

to separate data and is therefore called a Comma Separated Volume (CSV).

Column data format can be General. Excel should then show you a

spreadsheet of your data with column headings. All port and battery

numbers are in volts. Remember that the time count resets to 0 minutes 0

seconds after a power disruption.

8 The remainder of this procedure assumes you are using Tera Term. The same tasks with probably different key

strokes will be performed with any similar program.

R. G. Sparber November 30, 2018 Page 14 of 43

If the payload experienced any power disruptions (i.e. power hits), you will see

warning text in the data file like this:

Minutes,Seconds,Port0,Port1,Port2,Port3,Port4,Port5,Port6,Battery,

0,1,5.00,5.00,5.00,4.99,4.99,4.99,4.99,4.77,

0,2,5.00,5.00,5.00,4.99,4.99,4.99,4.99,4.77,

…

35,4,5.00,5.00,5.00,4.99,4.99,4.99,4.99,4.77,

Power has been disrupted during flight. warning text

0,1,5.00,5.00,5.00,4.99,4.99,4.99,4.99,4.77, time stamp resets

0,2,5.00,5.00,5.00,4.99,4.99,4.99,4.99,4.77,

…

63,42,5.00,5.00,5.00,4.99,4.99,4.99,4.99,4.77,

The above data set was taken with a one second sampling rate but the default for

the code is every two seconds.

R. G. Sparber November 30, 2018 Page 15 of 43

Software Overview

The Pro Micro’s code9 is structured into three

groups. When power is applied, parameters

related to the physical structure of the

processor board are read so the software knows

what is connected. Variables and constants

accessible by all code are also defined.

Next, we execute code within the setup

grouping. This code only runs once.

Code within the loop grouping is continuously

executed until power is removed.

Major functionality first presented in the User’s Guide is:

S Scan all ports and display

P Prepare for launch

O Output collected data in Comma Separated Volume (CSV) format

9 The Pro Micro is a member of the Arduino family and runs C/C++.

R. G. Sparber November 30, 2018 Page 16 of 43

Physical Environment Overview

Within the payload we have sensors, our circuit board, an externally mounted

status light, and a USB cable that can be connected to a PC.

On the circuit board is a Computing System (our Pro Micro) and a memory device

that retains information even when power is removed (our Electrically Erasable

Programmable Read Only Memory or EEPROM).

The Computing System can read data from the sensors in the form of DC voltages,

convert this data to numbers, store the numbers in memory or send it via the USB

to the PC. It can also drive the status light.

Not shown in the diagram is the power source which is a 7.4 volt Li-Po battery.

R. G. Sparber November 30, 2018 Page 17 of 43

Computing Environment

Our Computing System is an Arduino compatible device called a Pro Micro. The

EEPROM has a capacity of 128 KB (kilobytes) and is part number 24LC1025.

From a logic standpoint, the Pro Micro sends an address to the EEPROM along

with a read/write command. If a read is requested, data is returned. If a write is

requested, the Pro Micro supplies the data and it is stored at the specified address.

The EEPROM has a 17 bit address so can store 217 = 131,072 bytes. Note that

“kilo” in memory means 1024 and not 1000 so 128 K equals 131,072. The first

address is 0 so the last address is 131,071 for a total of 131,072 bytes.

Inside the Pro Micro is another EEPROM which holds the software.

The status light is a high intensity LED that is visible even in direct sunlight. It is

mounted on the exterior of the payload.

All sensors output a voltage between 0 and 5 volts.

R. G. Sparber November 30, 2018 Page 18 of 43

Command Details
When you enter “M” in the Tera Term command window, you will see

 Flight Data Recorder

 by Rick Sparber

Version 1.0 will be a different version

M This menu.

D Display all port voltages and set the pre-flight state.

P Prepare for launch!

A Use only while in flight: Display all port voltages.

O Output data file.

S Stop data collection.

C Calibrate internal hardware clock.

H Diagnostic: Output control block.

T Diagnostic: Generate test pattern in data memory.

LED semaphore

1 flash per cycle - normal data collection

2 flashes per cycle - normal data collection after power disruption

3 flashes per cycle - memory locked either manually or because it is full

4 flashes per cycle - pre-flight

5 flashes per cycle - hardware or software fault detected

R. G. Sparber November 30, 2018 Page 19 of 43

D Display all Ports
A single scan of all ports is displayed along with the Time Calibration constant. If

any hardware or software errors were detected, they will be displayed too.

Display of all Port Voltages and Pre-flight State

Battery: 7.40 volts

Port Voltage

==== =======

 0 5.00

 1 3.51

 2 0.00

 3 0.74

 4 0.82

 5 0.63

 6 0.83

Time calibration is now showing 1000 internal

millisecond counts per actual second.

If not between 900 and 1100, run time calibration.

The hardware and software error code should be written down and brought to the

attention of the instructor. In all cases, this means a fatal error has occurred but

some data may have been collected.

error codes meaning

1 Out Of Range Read

2 Out Of Range Write

3 ControlTheFlightParameters ReadyForLaunch Read Back Failure

4 ControlTheFlightParameters InFlightFlag Read Back Failure

5 JustWait Read Back Failure

6 PrepareForLaunch Read Back Failure

7 WriteEEPROM Attempt Made To Write To Locked Memory

8 Attempt Made To Write To OneSecondMilliseconds Constant

9 USB’s receiver return code was Out Of Range (negative value)

10 Read Back From EEPROM Mismatch

R. G. Sparber November 30, 2018 Page 20 of 43

P Prepare for Launch
When the user wants to prepare the payload for flight, the Pro Micro sets flags in

the EEPROM to indicate we are ready for flight. These flag are read the next time

power is applied and the software knows it must start to collect sensor data and

store it in the EEPROM.

Before entering P, you can see the state of the Control Block by entering H. One

possible output is:

Control Block

======================

Memory is locked. In Data Readout.

There are no detected faults.

Start of Next Memory Block = 131072 (100% full)

Time calibration value = 1000

Data will be recorded every 2 seconds for a total

run time of 4.55 hours.

Compilation date is Nov 20 2018

C:\Users\Owner\Documents\FDR10.ino

We are in data readout mode. The start of the next memory block depends on the

amount of data collected on the last run. Here you see that the memory is full.

The time calibration value should be within 10% of 1000. If it is not, calibration

must be performed by entering “C”.

R. G. Sparber November 30, 2018 Page 21 of 43

After entering P and then Y to confirm this choice, you must turn Flight Data

Recorder power off. Turn it back on just before launch. Then you can enter H to

see something like this:

Control Block

======================

In flight.

There are no detected faults.

Start of Next Memory Block = 48 (0% full)

Time calibration value = 1000

Data will be recorded every 2 seconds for a total

run time of 4.55 hours.

Compilation date is Nov 20 2018

C:\Users\Owner\Documents\FDR10.ino

Note that memory is nearly empty10. Data is sampled every 2 seconds which

translates to a data collection run time of 4.55 hours which is 4 hours 33 minutes.

10 Each data block is 16 bytes and the control block is 16 bytes. That “next memory block” address of 48 means we

will write block (48-16)/16 = 2 next.

R. G. Sparber November 30, 2018 Page 22 of 43

Live Data Display while Logging
While testing the payload, it is useful to be able to continuously display the port

readings while also logging them.

At power-up, live data display is turned off. You can turn it on via the menu

command “A” but only if you are already logging port readings. In other words,

you are in the “in-flight” state. To get to this state, you must first enter “P” and

follow the instructions.

Once in the “in-flight” state, you can monitor the sensors by entering “A”. Expect

to see something like this:

Port readings will be displayed as they are collected.

Port0 Port1 Port2 || Port3 Port4 Port5 || Port6 battery

2.02 2.14 1.61 || 1.47 1.59 1.24 || 1.41 4.78

2.10 2.02 1.59 || 1.57 1.53 1.22 || 1.45 4.78

1.98 2.33 1.80 || 1.45 1.65 1.35 || 1.41 4.78

When data is being displayed, you can enter “A” at any time to print out the

heading again. For example:

Port readings will be displayed as they are collected.

Port0 Port1 Port2 || Port3 Port4 Port5 || Port6 battery

1.84 2.16 1.76 || 1.27 1.61 1.39 || 1.31 4.78

1.86 2.14 1.75 || 1.29 1.59 1.37 || 1.31 4.78

1.88 2.14 1.73 || 1.33 1.59 1.35 || 1.31 4.78

If you stop data recording with the “S” command, you will see

Data collection has been stopped. The EEPROM is now locked.

If you then enter “A”, you will see

Memory is locked so there is no new data to display.

R. G. Sparber November 30, 2018 Page 23 of 43

O Output collected data in CSV11 format
Upon landing, the user can request that all data be dumped to the PC. This action

locks the EEPROM so none of the collected data is erased. The EEPROM will

only be unlocked when the software receives a request to prepare for a new flight.

See page 13 for how to capture this data into a log file.

S Stop Data Collection
The EEPROM will be locked and no further collection of the data will occur until

the next time “P” is entered. This command is handy immediately after landing

when you may want to verify there were no error codes and data was collected but

do not want to sit through the download of many blocks of data.

C Calibrate Internal Hardware Clock
The Pro Micro has a hardware based clock that derives its accuracy from a crystal

built into the Pro Micro board. This function lets you calibrate this clock to give

the best possible accuracy. This value is stored in EEPROM.

There are 1000 milliseconds in a second. If the Pro Micro hardware is accurate to 4

places, then the calibration value will be 1000. The software allows a hardware

error of +/- 10% which means it recorded a value of 900 to 1100 milliseconds per

second. This value is used to adjust the timing so we collect sensor data every

second.

If the Pro Micro board or the EEPROM device are changed on the Flight Data

Recorder, it is essential that the hardware clock be calibrated.

When you enter “C”

Clock Calibration Function

WARNING: This task takes 3 hours to run. Do not proceed

unless you are willing to complete the job.

Type 'A' now to Abort.

Use https://time.is/ for the best timing source.

When you are ready to Go, type 'G'.

11 CSV means Comma Separated Volume.

R. G. Sparber November 30, 2018 Page 24 of 43

If you enter “G”

G

Time calibration has just started.

Type 'E' after exactly 3 hours to End calibration

interval. Type 'A' to Abort.

Every minute another “.” will appear. After every hour you will see "About one
hour has passed."

The LED will flash once every second.

After exactly 3 hours12, enter “E” to end the calibration interval. Any calculated

Clock Calibration value more than ± 10% from the ideal value of 1000 will be

rejected.

If you start the calibration procedure but cannot finish, all is not lost. While in the

timed interval, you can enter “I”. This will give you the opportunity to initialize the

Clock Calibration value to 1000. Doing this is better than nothing but is not a

substitute for performing the calibration procedure.

12 By running for 3 hours, the typical response time of the user is a small enough percentage of the total time that is

does not show up in the calibration time. 3 hours equals 10,800,000 milliseconds. If the user took 4,000 milliseconds

to press “E”, then the count would be 10,804,000 milliseconds. 10,804 divided by 10,804,000 equals 1000.4.

Rounded to 4 places give 1000. So a response time of up to 4 seconds is harmless when we run calibration for 3

hours.

R. G. Sparber November 30, 2018 Page 25 of 43

H Diagnostic Output Control Block
When “H” is entered you will see something like this:

Control Block

======================

In flight with power hit.

There are no detected faults.

Start of Next Memory Block = 64 (0% full)

Time calibration value = 1000

Data will be recorded every 2 seconds for a total

run time of 4.55 hours.

Compilation date is Nov 20 2018

C:\Users\Owner\Documents\FDR10.ino

In flight with power hit - software is in flight mode and has experience

at least one power hit. Look at the timer in the output data for details of when this

happened.

There are no detected faults. - If any faults were detected, they

would be spelled out here. These could be hardware or software faults. There is

nothing the user can do about these faults except report them to the instructor. If

the fault is an intermittent hardware or software fault, replacing the Pro Micro

and/or EEPROM would be in order.

Start of Next Memory Block = 64 - This is the address of the next

block of data. The first data block starts at 16 and the last possible data block starts

at 131,060. The memory is 0% full.

Time calibration value = 1000 - This is the number of hardware

based millisecond counts in one externally measured second. Each of these counts

is ideally 1 millisecond so ideally, this value is 1000. The software allows the user

to adjust this value by as much as ± 10% due to variation in the hardware. See page

23 for the calibration procedure.

R. G. Sparber November 30, 2018 Page 26 of 43

Control Block

======================

In flight with power hit.

There are no detected faults.

Start of Next Memory Block = 64 (0% full)

Time calibration value = 1000

Data will be recorded every 2 seconds for a total

run time of 4.55 hours.

Compilation date is Nov 20 2018

C:\Users\Owner\Documents\FDR10.ino

Next we see the data collection rate and maximum run time. Given that we record

data every 2 seconds, we can collect data for 4.55 hours which is 4 hours 33

minutes.

The rest of the information relates to a check on the program’s version number.

You see the day the program was compiled and the location of the program file in

the development environment.

R. G. Sparber November 30, 2018 Page 27 of 43

Software Details
There are three guiding principles used to write this software:

1. Structured – similar functions are grouped into the same subroutine.

2. People readable first – it is far more important that the code be readable by

people and only secondarily readable by the computer

3. Layered functionality – keep breaking down the tasks into subroutines

The software is dealing with the EEPROM so let’s look at it

first.

The EEPROM has an address space of 17 bits. This means there

are a total of 217 bytes available. Since we start counting from 0,

the highest address is 217 − 1 = 131,071.

The control block occupies the first 16 bytes so its addresses go

from 0 to 15. At the present time, we are only using the first 11

bytes. The rest is for future growth. Any control information that

must survive a loss of power is stored in the control block.

Our first data block starts at address 16. One data block is 16

bytes (0 – 15) so this data block ends at 16+15 = 31. We

continue this pattern until we read the end of memory. The last possible data block

starts at 131,056 and ends at 131,071. When we run out of memory, it will be

locked with a next block starting address of 131,072.

R. G. Sparber November 30, 2018 Page 28 of 43

The maximum number of data blocks is

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎 + 1

𝑑𝑎𝑡𝑎 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒

We add 1 because we want to know the total count and not the difference13.

131071 − 16 + 1

16
= 8191

We generate a data block every two seconds so if we fill the EEPROM, it will hold

8191 X 2 seconds of data. This is 4 hours, 33 minutes, and 2 seconds of run time.

13 For example, say I have items 1 through 5 so 5 items. I must subtract 1 from 5 to see the different and then add 1

to get the count.

R. G. Sparber November 30, 2018 Page 29 of 43

Now we can start talking about the software.

At the highest level we have:

void loop()

{

Time(); //applies on the ground and in the air

OnTheGround(); //tasks only done on the ground

InTheAir(); //tasks mostly done in the air

}

Within Time() we have

RefreshTimeCalibrationConstantQ();

LapseTimerSeconds();

LED_Cadences();

The Arduino compiler does not permit special characters so I use a “Q” to

represent a “?”. RefreshTimeCalibrationConstantQ()deals with

ensuring that the hardware timer is running accurately even when there has been a

momentary power loss. More on this later.

LapseTimerSeconds() deals with the time since the last time power was

turned on. Built into the name of this subroutine are its units.

LED_Cadences() generates a number of different cadences used to flash the

external LED. From the “D” command, you saw:

LED semaphore

1 flash per cycle - normal data collection.

2 flashes per cycle - normal data collection after power disruption.

3 flashes per cycle - memory locked either manually or it is full.

4 flashes per cycle - pre-flight.

5 flashes per cycle - hardware or software fault detected.

These flashing patterns let the user know the state of the payload without

connecting up the PC. This will be useful when the payload is retrieved from the

landing site.

R. G. Sparber November 30, 2018 Page 30 of 43

void loop()

{

Time(); //applies on the ground and in the air

OnTheGround(); //tasks only done on the ground

InTheAir(); //tasks mostly done in the air

}

The second subroutine in loop() is OnTheGround() which contains

OnTheGround(){

 ControlTheFlightParameters();

 ScanForCommand();

 OutputMenuQ(); //M command

 SingleDisplayDataQ(); //D command

 PrepareForLaunchQ(); //P command

 ContinuousDisplayDataQ(); //A command CR1.7

 OutputDataFileQ(); //O command

 StopCollectingDataQ(); //S command

 CalibrateClockQ(); //C command

DiagnoticOutputControlBlockQ(); //H command

 GenerateTestPatternQ(); //T command

 FlashLED();

}

I will discuss ControlTheFlightParameters()later and address

ScanForCommand()next.

R. G. Sparber November 30, 2018 Page 31 of 43

ScanForCommand()looks for single letter commands from the PC’s keyboard:

M This menu.

D Display all port voltages and set the pre-flight state.

P Prepare for launch!

A Use only while in flight: Display all port voltages.

O Output data file.

S Stop data collection.

C Calibrate internal hardware clock.

H Diagnostic: Output control block.

T Diagnostic: Generate test pattern in data memory.

These commands are sent to all of the subroutines ending in “Q”.

 OutputMenuQ(); //M command

 SingleDisplayDataQ(); //D command

 PrepareForLaunchQ(); //P command

 ContinuousDisplayDataQ(); //A command CR1.7

 OutputDataFileQ(); //O command

 StopCollectingDataQ(); //S command

 CalibrateClockQ(); //C command

DiagnoticOutputControlBlockQ(); //H command

 GenerateTestPatternQ(); //T command

If this is painfully obvious, then I’ve done my job. The software should be “People

readable first”.

R. G. Sparber November 30, 2018 Page 32 of 43

GenerateTestPatternQ () can be used to exercise the steps from outputting

the data to graphing it in EXCEL. When you enter “T” you will see

You asked to generate a test pattern in the data.

This will erase all existing data. Are you sure? Y/N

Test Pattern generation about to start.

..........

Done.

Each “.” means a data block has been written.

Then if you enter “O” to output the data you will see

Minutes,Seconds,Port0,Port1,Port2,Port3,Port4,Port5,Port6,Battery,

0,2,0.00,0.01,0.02,0.03,0.04,0.05,0.06,5.07,

0,4,0.08,0.09,0.10,0.11,0.12,0.13,0.14,5.15,

0,6,0.16,0.17,0.18,0.19,0.20,0.21,0.22,5.23,

0,8,0.23,0.24,0.25,0.26,0.27,0.28,0.29,5.31,

0,10,0.31,0.32,0.33,0.34,0.35,0.36,0.37,5.39,

0,12,0.39,0.40,0.41,0.42,0.43,0.44,0.45,5.46,

0,14,0.47,0.48,0.49,0.50,0.51,0.52,0.53,5.54,

0,16,0.55,0.56,0.57,0.58,0.59,0.60,0.61,5.62,

0,18,0.63,0.64,0.65,0.65,0.66,0.67,0.68,5.70,

0,20,0.70,0.71,0.72,0.73,0.74,0.75,0.76,5.78,

As currently set14, you get 10 blocks of data starting at 2 seconds and going

through 20 seconds.

The first two fields are the time stamp. Ports 0 through 6 follow with an increase of

0.01 volts per port. The last entry is 5 plus the count. For example, in the first

record, port 6 equals 0.06 volts and Battery is 5.07 volts. Port 0 in the next block is

0.08. You will see round off error in this data of ± 0.01 volts.

14 SamplingRateByte determines how often the program records and plays back the data.

R. G. Sparber November 30, 2018 Page 33 of 43

Graphed in EXCEL, the port data looks like this:

This regular pattern makes it easier to identify logic errors in EXCEL that

processes this data.

R. G. Sparber November 30, 2018 Page 34 of 43

The last subroutine in OnTheGround()is FlashLED()which depends on the

Time() subroutine plus Flight Parameters to flash the external LED at the correct

cadence.

R. G. Sparber November 30, 2018 Page 35 of 43

Going back to the first subroutine of OnTheGround() we have

ControlTheFlightParameters()which solves the problem of what to do

when power is first applied to the Arduino.

In here, I set the JustPoweredUpFlag to “true”.

The ControlTheFlightParameters()

subroutine is down here. The first thing the

ControlTheFlightParameters() does is set the

JustPoweredUpFlag to “false”. In this way, it knows

when power has just been applied.

Then it must figure out what needs to be done next. The options are:

• We were set to “just wait” so now continue to just wait.

• We were set to “ready to launch” so now are “in flight”.

• We were “in flight”, took a power hit so we have now experienced

“disrupted power” so must get back to being “in flight”.

The Control Block stored in the EEPROM tells the software where it was before

power was lost.

We automatically get into “just wait” when we ask for a Display of the port

voltages. Data is not collected, we do not prepare to launch, and we do not

continue to collect data after power is restored.

R. G. Sparber November 30, 2018 Page 36 of 43

void loop()

{

Time(); //applies on the ground and in the air

OnTheGround(); //tasks only done on the ground

InTheAir(); //tasks mostly done in the air

}

So far we have addressed Time() and what to do OnTheGround(). The last

top level subroutine is what to do InTheAir(). This subroutine must know

when to process data. The rule is that data is collected and saved only when we are

in flight, the memory is not locked, and it has been two seconds since the last data

cycle. “In flight” is the time between power just re-applied after we prepared for

flight and the time we stop collecting data with either a D, S, or O command.

Where from here?
You are ready to look at the code and understand the details of how it works plus

how it was structured and documented. It will take time to comprehend even

though all constants, variables, and subroutine names are designed to be

descriptive.

R. G. Sparber November 30, 2018 Page 37 of 43

Adding Digital Sensors
The first line of the program is

//#define SoftwireActive 1 //comment out if ports 5 and 6 are to be used

Those first two forward slashes (//) make this line invisible to the compiler.

Remove those forward slashes and you transform sensor ports 5 and 6 into a I2C

bus.

 The circuit board has a three pin connector

with Softwire etched into the copper. This

connector has

SCL

SDA

and ground.

A cable plugs in here and goes over to a new

board that holds digital sensors. As needed, run +5V sensor power too.

The software needed to support this interface is called Softwire. Search the

program for “SoftwireActive” and you will see how it turns off ports 5 and 6 and

also turns off the port scanning subroutine. Along with selecting digital sensors,

you must locate their drivers and supporting documentation. Ultimately you need

to address each sensor and have it return its data. This data is then stored in

EEPROM. If you limit each data point to two byte, it will fit into the existing

storage and readout scheme as described on page 27.

R. G. Sparber November 30, 2018 Page 38 of 43

Indirect Addressing
This is an essential software technique that is not always so easy to comprehend.

Let me try to sneak up on this topic by starting with a

physical example: candy and a cup. The candy is a

constant and the cup is a place to put things.

Say I want to write a command that says to put the candy in the cup.

candy cup

In the language used to program the Arduino, C/C++

C = 4;

4 is a constant just like the candy and C is the cup.

But what if I want to have a more flexible rule that says to

put whatever is in the bowl into the box?

what is in the bowl cup

C = B;

or even

Cup = WhatIsInTheBowl;

This will let me have a fixed rule yet change the contents of the bowl and it will

always end up in the cup.

R. G. Sparber November 30, 2018 Page 39 of 43

What if I had three cups? I might want the flexibility to do

 RedCup = WhatIsInTheRedBowl;

Or

BlackCup = WhatIsInTheBlueBowl;

Or

BlueCup = WhatIsInTheBlackBowl;

I could write three commands and select between them but as the number of cups

increases, this becomes impractical. What about adding a box that will hold a piece

of paper with the name of the cup on it?

1. Read note in box to find which cup to use

2. Pick up what is in that bowl

3. Put it into that cup

By changing the note in the box, I change which

cup to fill. This is called indirect addressing.

Now we are ready to apply this to the program.

R. G. Sparber November 30, 2018 Page 40 of 43

Our “candy” is now our data and the “bowl” is now a port. The “box” is now our

pointer address. The “note” marked red cup is now our EEPROM address

pointer. Instead of having red, black, and blue cups we have EEPROM address

10, 20, and 30.

Let’s try this out.

 I scan port 3 and have data.

Looking in the pointer address, I see that the next available

EEPROM address pointer is 10.

The data is moved to EEPROM address 10.

We can then increment the EEPROM address pointer to

20 and start the cycle over. The next data to arrive will

end up being stored in EEPROM address to 20 with no

change in the logic.

R. G. Sparber November 30, 2018 Page 41 of 43

What can be confusing is that one address,

pointer address, is used to find another

address, EEPROM address 10.

Now we are ready to look at “pseudo” code. This is English text which can be

translated to Arduino code.

Setup: //done once

Data; //define a variable called data which holds the value collected from a port

StartOfNextMemoryBlockPointerAddress = 10; //The memory

location called “StartOfNextMemoryBlockPointerAddress” has been

set to the value 10;

Logic:

//get the address of the next available EEPROM address which is 10

StartOfNextMemoryBlockPointer = Read(StartOfNextMemoryBlockPointerAddress);

//write the data to this next available EEPROM address so data is put in location 10

Write(StartOfNextMemoryBlockPointer, data);

//increment the EEPROM memory pointer value by 10 so it becomes 20

StartOfNextMemoryBlockPointer = StartOfNextMemoryBlockPointer + 10;

//save the updated StartOfNextMemoryBlockPointer back in its memory location

Write(StartOfNextMemoryBlockPointerAddress,

StartOfNextMemoryBlockPointer);

We are now ready to get the next port’s data. All logic will operate the same except this data will

be stored in EEPROM memory location 20.

R. G. Sparber November 30, 2018 Page 42 of 43

Acknowledgment
Thanks to José Inzunza and John Herrmann for reviewing this document and

providing invaluable insights.

Rick Sparber

R. G. Sparber November 30, 2018 Page 43 of 43

Appendix: Tera Term
Tera Term is a program able to send keystrokes to the Flight Data Recorder and

received data from it. This data is displayed on the PC screen plus can be saved in

a file for later processing. One such program is called Tera Term

(https://ttssh2.osdn.jp/index.html.en).

Load it on a PC where you have Admin privileges. The PC will be used to send

commands to the software and receive both status information and data dumps to a

file.

PC Setup

1. Connect the USB cable between the

processor board and the PC.

2. Turn on power to the Data Logger.

3. Bring up Tera Term.

4. Watch

https://www.youtube.com/watch?v=rGrKRpol7PA for

how to set up Tera Term and save it as a short cut. You will then only have

to double click this short cut to have all parameters set to the correct values.

All of the following menu items are on the Setup tab. Click OK when

leaving each screen.

Terminal Terminal size 80 X 30

Window enter a Title for the short cut and choose the look of the

command window. Set Scroll buffer to 10000 lines.

 Font select a font and size you like

 Serial port select the COM port you are using. The Baud rate is 19200.

 Save setup save all of the setting you just performed in a file called

DataLogger. Remember where you put this file and you will

need it next

Go to the folder holding the Tera Term application and create a short cut for the

desktop. Then right click on the short cut and select Properties. In the Target

window, add to the end
/f= DataLogger

Then click OK. When you want to access the Flight Data Logger, just click

on this short cut and it will come up with your desired parameters preset.

https://ttssh2.osdn.jp/index.html.en
https://www.youtube.com/watch?v=rGrKRpol7PA

