
R. G. Sparber March 28, 2024 Page 1 of 93

Irrigation Flow Monitor and Control
System, Version 2.3.1

By R. G. Sparber
Protected by Creative Commons.1

Conclusion
This package of hardware and software

can stop water wasted due to irrigation

leaks and the death of plants due to

insufficient water.

Within one minute, it will detect and

shut down any zone with a flow rate

greater than 30% above the average. It

will also alarm if the flow is less than

30% below the average.

Besides sounding an audible alarm, it

sends an email to the user. This feature

would be particularly valuable for

irrigation companies responsible for

residential sites and for “snowbirds” that

are far from their property being irrigated.

One blown or clogged line can cost more than the price of the Flow Monitor and

Control.

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj96IjfmsHYAhXoiFQKHQ-JA9gQjRwIBw&url=http://www.allianceforwaterefficiency.org/Irrigation_System_Maintenance_Introduction.aspx&psig=AOvVaw2-HItGKjtOT5c2IbNC0xH3&ust=1515254919195545

R. G. Sparber March 28, 2024 Page 2 of 93

I built this system for under $150. Approximately $80 of this was for commonly

available parts. The challenge is to find an accurate flow meter at a reasonable

cost. I used a modified second hand Badger Model 25 flow meter. This is fine for a

hobbyist but not as part of a product.

My Goal
I want someone or some company to pick up this design and turn it into a

product. Developing the hardware and software is 10% of the effort. Product

development, packaging, marketing, distribution, and product support make up

the other 90%. In exchange for this effort, they are free to keep all profits. I just

want to see a significant reduction in wasted water.

Background
I own a very smart Irrigation Controller from RainBird. It is aware of the weather

and adjust the run time of each of my 6 zones accordingly.

However, this controller is missing an important feature:

the ability to monitor and act on flow rates.

If a valve sticks closed or open it can’t tell. If a pipe bursts,

it can’t tell. If a single “spaghetti line” blows its emitter,

can’t tell. Worse yet, I can’t quickly shut off the water.

All of that changed with my Flow Monitor and

Control (FMC) installed.

See https://www.youtube.com/watch?v=fuf6UD6G-A8&t=94s and

https://www.youtube.com/watch?v=oRK1sAZ7rfI&t=73s for videos of the system

in action.

https://www.youtube.com/watch?v=fuf6UD6G-A8&t=94s
https://www.youtube.com/watch?v=oRK1sAZ7rfI&t=73s

R. G. Sparber March 28, 2024 Page 3 of 93

Up until now, I have compensated for the lack of automatic flow control by

manually recording my water usage on my city water meter. Since most of my

usage is due to irrigation, this does at least tells me something is wrong. I must

then sequence through all 6 zones and inspect the area of the property until I find

the one with the problem.

In one case, I had a significant leak that left no water on the surface. My monthly

bill told me something was wrong when it indicated 20,000 gallons of unusual

consumption. That $300 bill was a big motivator for finding an automatic method

of dealing with flow problems.

RainBird does sell a flow monitoring system, but it is targeted for the commercial

market and is priced accordingly.

This article presents the design of my system, including system block diagrams,

schematics, flow charts, and software. It does not show the many dead ends and re-

writes needed to get to what was finally built.

I have included sufficient detail, so someone with some hardware background

could build the system. Contact me to receive the current software.

R. G. Sparber March 28, 2024 Page 4 of 93

User’s Manual
Under normal conditions, the user does nothing. If the

beeper sounds, the screen will tell the user which zone has

a problem and what is wrong.

If the Flow Monitor and Control was able to stop the flow

of a faulted zone, the user should inspect the zone, correct

the fault, and then clear the alarm.

If the flow cannot be stopped, the user should turn off the

main water supply. The problem will be between the water

meter’s output and the valve’s output. A broken pipe will

be obvious. If a valve is unable to shut down, you will see

water flowing in the zone when the controller says it is off.

All alarms trigger an email to the user at the time of the fault. To verify the

reporting path is functional, a heartbeat message is sent at sunrise each day. Power

up and Maintenance operations also cause an email to be sent.

System Normal
When The Flow Monitor and Control is first

powered up, it records the average water use for

each zone. Here you see Zone 1 is active, and

the flow is 4.54 Gallons Per Minute (GPM).

These measurements are saved as the first

reference flow2 when Zone 1 is turned off by the Irrigation Controller.

When a given zone is rerun, its flow rate is

compared to the reference. In this case, the

current flow matches the flow the last time this

zone ran.

When no zones are on, the flow is compared to a

limit3 of 0.06 GPM. Flow less than 0.06 GPM is

considered acceptable.

2 It is therefore essential that each zone is initially in proper working order. See page 9 for how to audit each zone.
3 All readings are ± 0.03 GPM so this is the smallest limit we can have and not get false alarms.

R. G. Sparber March 28, 2024 Page 5 of 93

If more than one zone is on, no flow information is

displayed. A short in the cable out to the valves would

cause this condition. The RainBird controller does not

run more than one zone at a time but it might be possible

to do manually.

Fault Situations
When no zones are on, and the flow exceeds the

limit of 0.06 GPM, we get an Overflow condition,

and a Major Alarm is sounded both day and night.

It will sound for 0.1 seconds and be quiet for 0.1

seconds. The number in the lower right-hand corner

is the current flow. It is possible to see “Can’t stop idle flow.” with a current flow

of 0. This means it was greater than 0.06 GPM but is now zero.

If the new flow is more than 30% higher than the

reference, we get an Overflow condition. The

system responds by turning off the valve and

taking another flow measurement.

If the flow is stopped, the screen indicates the

problem. If it is daytime, the Flow Monitor and

Control sounds a Minor Alarm, which is 0.3

seconds on and 2 seconds off. The flow that

triggered the alarm is in the lower right corner.

Other zones can run, and they will be monitored. If the flow can’t be stopped, a

Major Alarm will sound. Any time an Overflowed zone with Minor Alarm runs, its

flow will be stopped.

If the Flow Monitor and Control was unable to

stop the flow4, the screen tells the story, and a

Major Alarm is sounded. The current flow is in

the lower right corner.

The Irrigation Controller can run other zones, but they will be blocked as the Flow

Monitor and Control continues to try and stop the leak. I have seen this fault when

a valve was stuck open.

4 6.80 GPM is 9,800 gallons per day!

R. G. Sparber March 28, 2024 Page 6 of 93

If the flow is more than 30% lower than the

threshold, we get an Underflow condition. The

second line shows the current flow and average

flow (ref). If during the day, a Minor Alarm is

sounded.

If the underflowed zone is not active, the system

will monitor and control the other zones while

displaying the error message for the faulted zone.

If you hear two chirps every two seconds plus “AkF”, “WfF”, or “MkF” displayed

in the upper right corner of the screen, it means5 the ability to send status and alarm

emails has been lost at least in the recent past. Since there is no way to know, at a

distance, if another alarm is active, these chirps will sound even when audible

alarms were turned off. The “alarm clear” and “audible alarms temporarily

silenced” functions described below do act on this failure. However, when you

silence the alarm, it stays silent until the alarm is cleared. This is because it might

be a long time before someone can deal with the problem. If the alarm is cleared

but the failure is still there, the alarm will return within an hour.

Controlling Alarms

The following applies when there is an active alarm.

By pushing the “A” button, all alarms will be cleared. If the

problem is still present, the alarm will come back after 70

seconds.

By pushing the “B” button, any audible alarm will be

temporarily silenced. They will return if the problem has not

5 AkF means the acknowledgement expected from the processor that sends out emails has doed. WfF means WiFi

was down the last time an email was sent out. MkF means the “Maker” was down the last time an email was sent

out. The Maker translates the message from the Flow Monitor and Control into an email and is a web based service.

R. G. Sparber March 28, 2024 Page 7 of 93

been resolved and cleared in time. For a Major alarm, expect it to sound again in

15 minutes. Minor alarms will sound again after 24 hours. Fault information will

remain on the screen. See page 8 for how to permanently silence the audible alarm.

Automatic Alarm Retirement
Since all alarms are registered with the owner via email, they are cleared each day

six hours after sunrise with no loss of information.

Automatically clearing alarms avoids the problem of zones going out of service

due to large fluctuations in city water pressure.

R. G. Sparber March 28, 2024 Page 8 of 93

Maintenance Function

The following applies when there are no active alarms.

Review and Clearing Historical Flow Data

Pressing the A button, you

will see the historical flow

data for Zone 1.

If you press the A button again, it will erase this

zone’s data.

If you press the B button, you will advance to the next zone. Repeated

pressing of the B button will sequence through all of the zones, and

you will then return to the normal screen.

If the historical data was previously cleared and that

zone has not yet run, you will see

After all zones have been displayed, you get the chance

to enable or disable the audible alarm. This option is

also presented when the system power us.

If there is no action within five minutes, the system returns to normal operation.

R. G. Sparber March 28, 2024 Page 9 of 93

The following applies when there are no active alarms.

Measuring Instantaneous Flow

From the normal screen, pressing the B button

enables you to see the current instantaneous6 flow

rate. Before any flow is detected, you get this screen.

Press the A button at any time to return to this

screen.

Once a non-zero flow rate is measured, the active

zone and reference (historical) flow are also

displayed. They will update every second. If the

flow returns to 0, the last non-zero flow rate will

remain on the screen. Pressing the A button sends

you back to the Ready for Flow screen.

If two zones are active, the historical flow rate is

replaced with the second zone’s number.

If more than two zones are active, you will see >2 zones active

If there is no action within five minutes, the system returns to normal operation.

6 Normally, flow is measured over one minute intervals so small variations are averaged out. This flow measurement

is instant. That is good for seeing what the flow is doing every second.

R. G. Sparber March 28, 2024 Page 10 of 93

Status Indicators
On most screens you will see one or two letters and one or

two numbers. This is the status indicator. It is a sanity

check to be sure all is working. The first letter can be N

for nighttime with no audible alarms silenced. If n, it is nighttime and a silenced

alarm is active. A D means daytime with no audible alarms silenced. A d is

daytime and a silenced alarm is active.

The next character will be a T when we are waiting for the flow to build up and

stabilize. [means the flow meter has not indicated a unit of water7 has passed. A

] means the flow meter just saw a unit of water pass. The result is that you see [

with the right side flickering into a rectangle when there is flow. The higher the

flow rate, the closer you get to a constant rectangle.

The two numbers are a countdown until a new flow measurement is

complete. If a zone just turned on, the count will go from 70 seconds

down to 60 and the T will precede the count. At 60 you will see [and the count

will decrement until it reaches 0. Then the flow information will update.

If the user chooses to manually operate more than

one zone at the same time, the flow is not

monitored.

There is an electromechanical relay inside the

Flow Monitor And Control that can fail. As long as

it is stuck in the open position, this message will

display and a Minor alarm will sound. However, if

the problem goes away, we will return to normal operation.

It is also possible that software errors will occur. This might be from real software

bugs or could be due to electrical noise crashing the Flow Monitor And Control. If

you get a software error message, please write it down. Then unplug power for 10

seconds and plug it back in. See if the problem returns. Any correlations with

zones turning on or off would be helpful in debugging the problem.

7 One unit of water is 3.6 ounces or 0.028 gallons.

R. G. Sparber March 28, 2024 Page 11 of 93

Most of the above information is sent via email to the user.

Additionally, at dawn, they will receive a status message telling you how much

water was used the previous day.

R. G. Sparber March 28, 2024 Page 12 of 93

Contents

Conclusion ... 1

My Goal ... 2

Background .. 2

User’s Manual .. 4

System Normal ... 4

Fault Situations .. 5

Controlling Alarms .. 6

Automatic Alarm Retirement ... 7

Maintenance Function .. 8

Status Indicators ...10

The Original Configuration ..14

Auditing A Zone ..16

Fault Scenarios ...17

Blocking the Faulted Flow ...19

Detecting A Fault ...20

Logic Overview ..21

System Overview ...22

Details of the Existing System ...23

Introduction to the New Functionality ...24

The Flow Measuring Device ..24

The Flow Monitor and Control ..26

Presenting the Design ..26

Level One System Block Diagram ..27

Level Two System Block Diagram ..28

Flow Monitor and Control Inputs ..29

Flow Monitor and Control Outputs ...30

Level Three System Block Diagram ..31

Built In Testing Features ..33

Level Four System Block Diagram..34

Flow Sensor Mechanism ..34

R. G. Sparber March 28, 2024 Page 13 of 93

Flow Monitor and Control ...37

Signal Converter Subsystem ..39

All Zones Off ...40

Pushbuttons ..42

Light Sensor ...43

Flow Interface ..44

Power..47

The Arduino ...47

The Liquid Crystal Display ..53

The Full Schematic ..54

Bill Of Materials ..58

Software ...59

Overall Software Strategy ..60

Level 1 Flowchart ..62

Major Subroutines ..68

Software Structure..70

Acknowledgements ..72

Appendix 1: Zero Crossing Pulse Width ...73

Appendix 2: EEPROM Map ..74

Appendix 3: Arduino Compilation Error Experiences ..75

Appendix 4: Anti-flicker ..77

Appendix 5: Test Cases..78

Non-fault Cases ..78

Fault Cases ...79

Appendix 6: Sending Emails ...81

The Initial Design...81

Correcting Deficiencies ...83

New Key and Its Consequences ...92

R. G. Sparber March 28, 2024 Page 14 of 93

The Original Configuration
As intended by the manufacturer,

the RainBird Irrigation Controller

is connected to a number of

electrically powered water valves

via a cable. City water is applied to

the input side of each valve. The

controller applies power via the

cable to one valve at a time to send

water to the corresponding zone.

As viewed from a state diagram, the Irrigation

Controller powers up in the “Start” state. From

there we can move to one of three states. Either

no zones are active, one zone is active, or more

than one zone is active8. The irrigation

controller can move between one zone active

and no zones active as needed.

This behavior can be viewed on a

time line. From start at time 0, we

move to no zones active. Water

flow is 0.

At time 1 Zone n turns on and

flow starts to rise. It takes time for

the pressure to build up in the

pipes and for any pop up sprayers

to rise. I call this the transient time and is less than 10 seconds for my small

residential system.

At time 2 the flow has stabilized and we are around the average flow rate. The rate

could vary as a function of water pressure and sprinkler head variation but is

expected to be within ±30% of the average. Between time 2 and 3 Zone n is

running at full flow.

8 This last state can only occur manually.

R. G. Sparber March 28, 2024 Page 15 of 93

At time 3 the zone turns off and the flow starts to drop. At time 4 the flow is back

to 0. This is the second transient time and is also less than 10 seconds. We just

transitioned from one zone on to no zones on.

R. G. Sparber March 28, 2024 Page 16 of 93

Auditing A Zone

The FMC assumes that the first time it watches a zone run, all is well. It is

therefore essential that the user verifies there are no faults.

The FMC can be turned into a flow meter by pressing

the B button when no alarms are active.

Turn the zone on manually. Then walk along the zone. If an emitter or sprinkler

head should be putting out water and is not, time to repair it.

One way to detect leaks in a zone is to block all ¼ inch lines

and see how much flow is left. This can be done by bending

each ¼ inch line in half and securing it with a piece of wire

or bag tie. No water should then come out of the emitter.

With all ¼ inch lines blocked, the flow seen by the FMC

will be from leaks.

R. G. Sparber March 28, 2024 Page 17 of 93

Fault Scenarios

Of course, things do go wrong. A leak can develop

between the city water supply and the valves. With no

valve in the way, the leak cannot be stopped except by me

turning off the city water.

We need to measure the flow, determine it is more than the

Leakage limit, and sound a “Major Alarm”. Of course, this

assumes the leak occurs downstream of the flow measuring

device.

R. G. Sparber March 28, 2024 Page 18 of 93

More likely is a leak in a zone downstream from the valve.

As long as the zone is active, excess water will flow. But

when we return to having all zones off, the leak stops.

In this time line we start out the same as

the non-fault case. The zone is initially off

and the flow is 0. At time 1 the zone turns

on and the flow starts to build. At time 2

the flow is at the average. But at time 3 the

flow builds up a second time. Maybe a

pipe burst or a sprinkler head blew. We

end up at a flow more than 30% above

average. At time 4 the controller turns off

the zone, not knowing that a fault has

occurred. The flow then drops back to 0 at time 5.

R. G. Sparber March 28, 2024 Page 19 of 93

Blocking the Faulted Flow

Now, what if we added a new

function that was able to monitor

the flow and the state of each

zone. When it saw excessive flow,

the new function would turn the

zone off (red lines) and sound an

alarm.

When the controller turned this

zone off at time 5, the new

function would stop interfering.

So what is “average (non-fault) flow”? In order to reduce the burden on the user,

the system will assume that the first time a zone runs, it is normal. The software

will record the average flow for this run and save it as normal flow. If the next time

the zone runs it is within 30% of this historical data, all is fine. The new run

becomes the historical data. If a fault is detected, the previous historical data is

kept.

There is a blind spot here: if a zone is faulted while running for the first time, the

flow will be assumed normal and become the historical data. The user can

manually clear out all historical data so the system can learn anew.

R. G. Sparber March 28, 2024 Page 20 of 93

Detecting A Fault
We do not want any false alarms but also do not want to miss faults. Experience

has taught me that normal flow can vary ± 25%. To avoid false alarms, we want

our limit to be greater than this variation. RainBird has their limit set at ±30%

which is reasonable9.

If a zone consists of sprinkler heads, the nominal flow will be much larger than

with drip but a blown head will pass more water too. I don’t have any problem

detecting a blown head. However, a cracked riser could go undetected if it passes

less than 30% of the total.

Here is a case study of a poorly designed zone.

The FMC tells me this zone uses 2.46 GPM. I was able to sequentially close off

flow and build this map. Additionally, I introduced two faults to see how the flow

would change. Cutting a ¼ inch line near the raised bed caused an increase of 0.6

GPM. Far down the soft pipe run I only measured a 0.3 GPM rise due to a cut ¼

inch line.

30% of 2.46 GPM is 0.74 GPM. Therefore, neither fault will trigger an alarm. At

the risk of causing a false alarm, I could reduce my alarm threshold to below
0.3 𝐺𝑃𝑀

2.46 𝐺𝑃𝑀
 × 100% = 12.2%. Alternately, I could just accept that this loss of

detection is a consequence of an excessively large zone. Breaking this zone into

thirds would solve the problem.

My really big leaks have come from split soft pipe that is buried deep enough in

coarse crushed rock as to not show a puddle on the surface. Such a leak would

likely increase flow more than 30% so would alarm. To directly address this failure

mode, I replace all leaking soft pipe with ½ inch schedule 40 PVC.

9 Any zone with an average flow rate of less than 0.04 GPM is given a larger limit.

R. G. Sparber March 28, 2024 Page 21 of 93

Logic Overview
To address faults, we need to

1. monitor the flow on an active

zone

2. determine if it is too much

3. try to shut down the valve

4. check the flow again

5. determine if it is now less than

leakage

6. and sound an alarm

If closing the valve stopped the

flow, we call it a Minor Alarm.

Then we mark this zone so in the future it is prevented from running.

If, after we try to shut down the zone, the flow is more than leakage, we did not

stop the flow. It is then marked as a Major Alarm.

If the flow is too small, we call it Underflow and declare a Minor Alarm. The

plants are not getting enough water so shutting down the flow would only make

matters worse.

R. G. Sparber March 28, 2024 Page 22 of 93

System Overview
Flow Monitoring and Control is not a new invention. Companies like RainBird sell

a similar function. They are used in application where a large amount of water

normally flows and one leak can be costly. The price of such a system is over

$1000 and I’m sure it pays for itself quickly. But in my little home irrigation

system, this price tag is out of the question. Mine cost around $150.

I will call this new function “George”.

He sits between the Irrigation

Controller and all of the valves.

George can see which valves have

been operated by the Irrigation

Controller and also how much water is

flowing.

If the leak cannot be stopped, George must sound an alarm immediately. I must

then manually turn off the city water.

If the leak is only flowing while zone n is active, George can turn off valve n every

time the controller turns it on. Then he can sound an alarm during the day. No need

to wake me up if it is night.

My RainBird Controller automatically turns on only one zone at a time. The user

can manually turn on more than one zone. In this case, the user must deal with any

excessive flow. Since George only looks at the total flow, he would not be able to

figure out which zone was in trouble.

The user can also manually turn on a zone right on the valve. This will look like an

uncontrolled leak and generate an Overflow Major Alarm. To avoid such

excitement, it is best to manually turn on zones via the Irrigation Controller.

R. G. Sparber March 28, 2024 Page 23 of 93

Details of the Existing System

A seven conductor cable carries control power from the controller to the valves.

When the controller applies about 24 volts AC to a zone wire, the corresponding

valve opens and water flows in the associated zone.

R. G. Sparber March 28, 2024 Page 24 of 93

Introduction to the New Functionality

The Flow Measuring Device
George depends on knowing the precise flow rate in order to

do his job. Therefore, the first thing I bought was a water

meter. It was on eBay for $27 including shipping. This

meter is a Badger model 25 with a plastic body10.

By removing a screw (red arrow),

the readout head comes off. This provides access to a

surface with a spinning steel bar under it. The bar turns

as a function of flow through the meter. I see one

revolution every 0.028 gallons of flow11.

I sense the steel bar with a magnet attached to an arm. The

arm is supported by a ball bearing so is free to spin. A

magnetic sensor suspended over the path of the magnet

reports each revolution. It outputs pulses that are read by

George.

By measuring the flow over 1 minute, George calculates the

Gallons Per Minute (GPM). The meter connects between the

city water inlet and my valves and will provide water usage for

my irrigation system. This is necessary but not sufficient for

knowing the water usage per zone.

Logic is needed to look at which zone is active and how much

water is flowing.

10 The picture is of a bronze body meter. The plastic ones cost less and are black.
11 I used the city's water meter while I counted revolutions to determine this conversion factor.

R. G. Sparber March 28, 2024 Page 25 of 93

On 12/13/2019 I was searching for an off-the-shelf flow measuring device and

came upon flows.com which is owned by Assured Automation. They are located in

New Jersey. They sell the WM-PD-050 low volume flow measuring device. There

is an option to add an electrical contact that closes each time 0.05 gallons passes

through it. The price, including shipping/handling and tax is about $100.

This is a major find because it means that all components of the Irrigation Flow

System can be bought, rather than fabricated.

R. G. Sparber March 28, 2024 Page 26 of 93

The Flow Monitor and Control
The second piece of the puzzle is the Flow Monitor and Control

that will read the flow signal from the water meter plus read and

control the signals in the cable. This intelligence will have control

of the valves including overriding the Irrigation Controller if a

fault occurs in the valves or irrigation zones.

The FMC is built using discrete parts plus an Arduino

system on a board. Since this is a prototype, I used a

board much larger than ultimately needed. These

things do have a tendency to grow over time.

If turned into a real product, I expect the electronics to

be all Surface Mount Technology. It likely could be

slightly larger than the display.

Presenting the Design
I have no interest boring you with how I arrived at the following design. Instead I

will present the illusion that it was a simple task with no dead ends or false starts.

The hardware will be presented first starting with a high level view and ending

with circuits. Then the software will be presented starting with a high level view

and ending in code.

R. G. Sparber March 28, 2024 Page 27 of 93

Level One System Block Diagram
The Flow Monitor and Control

taps into each zone output of the

Irrigation Controller. It also

connects to the Common (COM)

wire. Under non-fault

conditions, “Common out”

(COM out) connects to COM.

All of the valves have two wires. One wire connects to a zone wire. The

other wire is joined with all other valves into a single conductor called

Common. Apply power between any zone wire and Common and that

valves will operate.

The figure shows the flow signal connected to wires in the underground cable. In

my case, the original cable had no spare wires so I had to run another cable.

R. G. Sparber March 28, 2024 Page 28 of 93

Level Two System Block Diagram

The FMC’s Human/Machine Interface consists of a display, two buttons, and a

piezoelectric beeper. The beeper can be seen on the left side of the box (red arrow).

On many screens you will see “D[xx” where “xx” is a number between 0 and 70.

This is a countdown timer that tells me how long until the next update. If during

the day, you will see “D”. At night, it will be “N”. Remember that Minor Alarms

sound only during the day. Major Alarms sound when they occur.

It is also common to see the flow rate on the

second line. Here you have 4.54 GPM. It is

being compared to the reference which is

also 4.54. If there was no reference yet, you

would have seen “ref-”. After the zone has

run once, the “-” is replaced by the reference flow.

If any alarms are active, the top button (A), clears them. If the problem has not

been corrected, the alarm will reappear after 70 seconds. The bottom button (B)

will temporarily silence the audible alarm. A Minor Alarm will stay quiet for 24

hours. A Major Alarm will return in 15 minutes.

R. G. Sparber March 28, 2024 Page 29 of 93

The audible alarms emanate from the piezoelectric beeper. Intentionally, it is

extremely annoying. A Minor Alarm will be on for 0.3 seconds and off for 2

seconds. A Major Alarm will be on for 0.1 seconds and off for 0.1 seconds. These

patterns were chosen so they would not sound like a smoke alarm.

Flow Monitor and Control Inputs
The FMC will monitor all outputs of the Irrigation Controller so it knows what

zone is supposed to be active.

Under automatic control, there

should be only one zone

running at a time.

The FMC will also accept the

common wire. This is the

return path for all valves. If

the FMC detects excessive

flow through a valve, it will be

able to disconnect the

common wire and remove

power to all valves.

The light sensor is located outside and outputs a logic 1 when the sun is out. It tells

the system when there is daylight so safe to sound minor

audible alarms.

This approach lets me avoid the cost and complexity of

including a real time clock. I do not need to know the

exact time, just that it is a reasonable hour to sound a non-

urgent alarm.

The irrigation water meter has a Hall Effect magnetic sensor attached to it. For

every 0.028 gallons of water passed through the meter, the sensor will generate a

pulse on the Flow line (red arrow). The FMC counts these pulses over time to

determine flow rate. The maximum flow I have seen is 15 GPM. This means a

pulse every

15 𝐺𝑎𝑙𝑙𝑜𝑛

𝑚𝑖𝑛𝑢𝑡𝑒
 ×

1 𝑝𝑢𝑙𝑠𝑒

0.028 𝑔𝑎𝑙𝑙𝑜𝑛𝑠
=

1 𝑝𝑢𝑙𝑠𝑒

1.9 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠
.

The software has been designed to keep up with this pulse rate.

R. G. Sparber March 28, 2024 Page 30 of 93

The FMC receives unregulated

12V DC.

It is used directly to run the relay

that switches common and also

to power the piezoelectric

beeper. Most of this power feeds

into a 5V regulator which

supplies the rest of the board.

Flow Monitor and Control Outputs
The FMC switches the switched

common line between the

common line at its input and an

open circuit.

The LCD display tell the user

status.

Power is supplied to the magnetic

sensor on the water meter.

The audible alarm is sounded by

the software to alert the user of

any fault conditions.

R. G. Sparber March 28, 2024 Page 31 of 93

Level Three System Block Diagram
The FMC is controlled by an

Arduino Pro Micro 5V/16

MHz. In runs on 5V and has

a 16 MHz clock. The

Arduino is paired with a

MCP23017 port expander to

provide sufficient digital

input and output pins.

Starting at the top, we have

unregulated 12V DC coming

from a wall wart. This

power supply can deliver up

to 500 mA. The voltage is

fed to the piezoelectric

beeper and to the relay that

switches the common wire.

A 5V regulator brings the

12V down to a level used by

the rest of the electronics.

Below the 5V regulator are

our signal converters. They

sense 24VAC on the zone

leads and convert them to 5V logic levels.

Next we have the All Zones Off function. It contains a normally closed relay under

software control. When no power is applied to this relay, the “common” wire is

connected to the “switched common” wire. When needed, the Arduino will send an

active AZO signal to the All Zones Off box which will energize the relay and

disconnect the switched common from the common wire. This will cut power to all

valves. Note that if the FMC loses power, it will become transparent to the

RainBird Irrigation Controller.

R. G. Sparber March 28, 2024 Page 32 of 93

The “B” button used to be called PEST audible alarms, and

the “A” button used to be called clear alarm button. They

feed directly into the port expander which has been

configured to connect 20K pull up resistors.

The light sensor generates a digital signal compatible with

the port expander. The sensor was placed where it can detect daylight. If an

irrigation fault is detected and controlled, the resulting alarm won’t sound until the

sun comes out. No need to wake me.

The flow signal from the irrigation water meter feeds directly into the port

expander.

Software is used to remove any mechanical bounce in the buttons.

The Arduino has three outputs.

During an irrigation fault condition, it drives the AZO

signal which cuts power to all valves and hopefully stops

water flow.

It drives an audible alarm, AA, to notify the user when a

problem has been detected.

And finally, The Arduino feeds the Liquid Crystal Display to provide system

status. While the other three outputs are single pins, the display takes 6.

R. G. Sparber March 28, 2024 Page 33 of 93

Built In Testing Features
In order to facilitate testing, a flow simulator has been built

into the software and hardware. The port expander can

output a pulse stream equivalent to a flow of 4.5 GPM. It

can also output 9 GPM and 2.25 GPM. These signals are

used to test nominal, Overflow, and Underflow states. By

moving a jumper I can select the flow sensor or simulated

flow. The jumper is shown in the flow sensor position.

My jumper block is made from a length of connector to

make it easier to grasp around all of those pins.

Not shown in the diagram are two jumpers that can simulate

Zone 1 and Zone 2 being active. Here you see both jumpers

set to normal operation.

An LED with limiting resistor connects across the relay coils. This makes it easier

to see when the software has disconnected the switched common wire from the

common wire.

Additionally, there is a software switch called SpeedUp. When turned on, the

software only measures flow for 10 seconds rather than a full minute. It also

shortens the PEST intervals to 100 seconds. This makes testing the software

quicker.

R. G. Sparber March 28, 2024 Page 34 of 93

Level Four System Block Diagram
At this level of detail, each functional block is described.

Flow Sensor Mechanism

I started with a Badger model 25 flow meter. The readout

mechanism was lifted off

and my interface hardware dropped in place.

The interface hardware was an unfortunate addition.

Originally I thought that there was a spinning magnet

inside the water meter. This could be directly sensed

by a Hall Effect device. But upon investigation, I

discovered that a steel bar was in there. The interface

hardware senses the bar and generates a spinning

magnetic field. Then my Hall Effect device can do its

job and convert revolutions to pulses. By using the

City’s water meter as my reference, I found that one

revolution equals 0.028 gallons of flow.

R. G. Sparber March 28, 2024 Page 35 of 93

The bar has a spigot on the back

that is a close fit to the ID of a ball

bearing. The bar has a ¼ inch

diameter hole in it that accepts a

neodymium magnet 1/8 inch thick.

I locked it in place with 3 punch

marks. At first I had two magnets

but found that this prevented

movement.

I later found that I needed to move

the bar closer to the top of the

meter in order to insure reliable

coupling. Placing a 3/8 inch

diameter by 1/8 inch thick magnet

on top did the trick.

Looking at the underside of the enclosure, you

can see the ball bearing’s inside diameter. The

spigot slides through and is secured with a screw

on the other side.

This hole accepts the Hall Effect sensor.

R. G. Sparber March 28, 2024 Page 36 of 93

With the Hall Effect sensor installed, the

power, ground, and output leads are

routed to a terminal block. The

electrolytic capacitor completes the

assembly.

A 4 inch diameter PVC pipe end is used

as a weather tight enclosure. The cable

running back to the FMC passes through

this cover and terminates on the terminal

block.

The resulting assembly came out nice but

in the future I hope to be able to simplify

the interface hardware and go with a

proximity switch that can sense the

spinning steel bar. The proximity switch I

tried did not work.

R. G. Sparber March 28, 2024 Page 37 of 93

I did spend a lot of time sitting with the

installed flow meter trying to get it to work.

This was not without excitement. That is a

Western Diamond Back rattlesnake. My

wrist was about one inch from its head when

I realized it was there. Fortunately, it was

early morning and cold out. The snake did

not perceive me to be a threat and was also

rather slow. I was able to convince it to move

on by filling the pit with some water. I

watched as it went back through a hole in the

block wall. Closing that hole worked. No

more company while I work in the valve pit.

Yes, I do look carefully before climbing in.

 Flow Monitor and Control
Here is an overview of the subsystems on the perf board.

2 row by 16 character LCD

Arduino Pro Mini

R. G. Sparber March 28, 2024 Page 38 of 93

Signal Converter Subsystem

Port expander

Relay driver and status LED

5V regulator

Testing jumpers

The relay is mounted on the back

side.

R. G. Sparber March 28, 2024 Page 39 of 93

Signal Converter Subsystem

The zone wires will either have about 24V RMS on them or be open circuits. The

signal converter circuit monitors this AC voltage and puts the state in a format

readable by the Arduino.

The signal converter circuit consists of 3

resistors and 2 NPN transistors. The input is

the voltage Vzone n and the output is VZn.

When Vzone n is above about 2V, Q1 turns on.

This pulls down on the Zn node and presents

a logic 0 to the port expander.

While Q1 is on, Q2 has about

-0.65V across its base emitter junction. This

keeps Q2 off but does no damage.

When Vzone n is below about -2V, Q2 turns

on. This pulls down on the Zn node and

presents a logic 0 to the port expander.

When Vzone n is less than 0.6V but greater than -0.6V, both transistors will be off.

The output then gets pulled up to Vcc (+5V) by R15.

Note the red vertical line on the VZn trace as Vzone n changes from

positive to negative. This results from Vzone n being less than 2V

in magnitude. The spike is treated the same as bounce on a

mechanical switch.

See Appendix 1 on page 73 for details on this narrow pulse which is about 320

microseconds wide.

R. G. Sparber March 28, 2024 Page 40 of 93

All Zones Off

 This functional block is an

electromagnetic relay with contacts that

are closed when power is removed. When the FMC loses power or when all is idle,

AZO is near 0 volts. This turns off Q1 and no power is sent to the relay. The

common wire is therefore connected to the switched common wire.

When AZO becomes active (around

5V), Q1 turns on. The relay powers

up along with the optional indicator

LED next to it.

When the relay is operated, the

normally closed contacts open. The

current being broken is AC and

passes through the valves which are

inductive. This means that arcing can

occur on these contacts. The snubber

circuit, C1 and R3, provide an

alternate path for the transient

current. This minimizes the arcing which can erode the contacts and cause the

Arduino to go off the rails.

R. G. Sparber March 28, 2024 Page 41 of 93

When the relay is

operated, the

switched common

lead is disconnected

from common. This

means the signal

converters will be

connected to a long

cable that floats at

the far end.

Electrical noise can be picked up and

cause zones to randomly look active

when they are not.

Even worse, if one zone is active so 24V AC is applied to one zone wire and the

switched common lead is floating, all zones will be at this voltage. This say they

are all active.

The problem is solved in software. When at least one zone is active and the relay is

then operated, we just wait for all zones to turn off. That will occur when the one

zone goes inactive. When all zones turn off, we again monitor zone states.

If the contacts on the relay fail to conduct due to built up oxides caused by arcing,

the software will see all 6 zones turn on when any one of them turns on.

Any time all 6 zones are seen in the on state while the relay is not operated, we

assume the relay is the problem. By turning the relay on and off quickly 20 times,

we attempt to break up the oxide layer. If that works, we return to normal

operation. If we still see all 6 zones on, we monitor the state and only return to

normal operation if the fault goes away. The display will say “hardware failure” as

long as the fault is detected or until the clear all alarms button is pushed.

R. G. Sparber March 28, 2024 Page 42 of 93

Pushbuttons
When either of the pushbuttons is depressed, a contact

closes and the port expander

sees a logic 0. When released,

the internal pull up resistor

generates a logic 1.

This closing action may cause

the contacts to bounce.

Software is used to filter that

out. We take 10 readings and

average the result. If it is less

than ½, we call a zero. Greater than or equal to ½ is a one.

R. G. Sparber March 28, 2024 Page 43 of 93

Light Sensor

I am using an ALS-PT19 light sensor from Adafruit Industries. When light shines

on the sensor, the phototransistor, Q1 conducts. This moves the output voltage

towards the voltage on the positive terminal. Without light, Q1 is off and the

output voltage moves towards the voltage on the negative terminal.

My light sensor is mounted inside a glass bottle that is a tight

fit into a PVC 45° coupler. I happen to have two wire speaker

cable. Since the ALS-PT19 has three terminals, I would need

to run two of these speaker cables and have half of one cable

unused.

Instead, I chose to not use R1. Then I was able to use a single cable between sensor

and Arduino board. Over at the Arduino I duplicated R1 plus put a 5K variable

resistor, R3, from the output signal to ground. It was then possible to adjust the

variable resistor so daytime generated a logic 1 and nighttime produced a logic 0.

This scheme lets me avoid the cost and complexity of having a battery backed up

real time clock.

https://cdn-shop.adafruit.com/1200x900/2748-00.jpg

R. G. Sparber March 28, 2024 Page 44 of 93

Flow Interface
The Hall Effect Sensor pulls the Flow lead down to ground very quickly to

generate a logic 0. With a logic 1 it just lets go. Rise time is defined by the

capacitance of the cable12 and a pull up resistor. This means that the fall time is

extremely small compared to the rise time. Both are much smaller than the

minimum period of the pulse stream.

The fast fall time is not a good thing. It causes

undershoot at the port expander that is greater

than what the device can safely handle.

I see about -0.8V which is beyond the -0.5V spec.

By placing a 50 ohm resistor in series with the Hall Effect device’s output, I was

able to slow the fall time and therefore reduce undershoot. Now the undershoot is

about -0.2V so all is well. It still takes only about 200 ns to go from +5V down to

near 0.

12 My cable is 50 feet long.

R. G. Sparber March 28, 2024 Page 45 of 93

There is a 10K pull up resistor at the port expander which assists the internal

“weak” pull up. The result is a rise time of about 40 µs which is fine given that the

minimum period for Flow pulses is 2 ms.

Each time the water meter’s

nutating disk13 moves, my

spinning magnet14 follows

it. The Hall effect sensor

sees this magnetic field and

pulls low. The software

responds to this high to low

transition. To be consistent

with other inputs, I use the

debounce software to read

the Flow signal. Here you

see a period of 640 ms.

Give a period of 640 ms we can verify the conversion process works. Each pulse

represents 0.028 gallons. Therefore

13 Here is a good explanation: https://www.youtube.com/watch?v=hxuFuT-RQyI
14 Refer back to page 25.

https://www.youtube.com/watch?v=hxuFuT-RQyI

R. G. Sparber March 28, 2024 Page 46 of 93

1 𝑝𝑢𝑙𝑠𝑒

640 𝑚𝑠
 ×

60,000 𝑚𝑠

1 𝑚𝑖𝑛𝑢𝑡𝑒
 ×

0.028 𝑔𝑎𝑙𝑙𝑜𝑛𝑠

 𝑝𝑢𝑙𝑠𝑒𝑠
= 2.63 𝐺𝑃𝑀

The display showed 2.69 GPM which is a difference of 0.03 GPM or 1 pulse. All

readings are ±1 pulse so this is reasonable.

The maximum flow rate that I have directly measured is around 15 GPM. The

software can handle up to 63 GPM.

R. G. Sparber March 28, 2024 Page 47 of 93

Power
A wall wart supplies unregulated 12V DC at up to 500 mA. It is used directly to

power the relay and the piezoelectric beeper. It also feeds a 3 terminal regulator

that supplies 5V to the rest of the FMC.

The Arduino
I am using a Pro Micro 16 MHz 5 volt device from Sparkfun.com. For about $20

(2017 price), you get an insane amount of

functionality. This device is far more than

just a computer. Much has been written

about it so I won’t duplicate that effort.

It is important to understand the two basic ways a pin is named: physically and

logically.

Physical: its physical

location. When looking

at the socket that will

accept the Pro Micro,

pin are numbered

starting at 1 and

sequentially numbered

in a counter clockwise

fashion when looking

down on the socket

from the top. Pin 1 is in

the upper right corner.

R. G. Sparber March 28, 2024 Page 48 of 93

Logical: the logical names of the pins. Some of these names are letters, some are

numbers, and the rest are a mix of letters and numbers. For example, physical pin 1

has the logical name TXO. It can get rather confusing at times. Consider physical

pin 5 which is logical pin 2. On top of this, you can configure each of these logical

pins to be

any one of a

number of

types. This

further

changes the

name. For

example,

logical pin 2

can be configured to be a Serial Data port (SDA) or to be Interrupt 1 (INT1).

You really need a score card to keep it all straight! Fortunately, Sparkfun has done

a masterful job of providing such a card as can be seen on the next page.

R. G. Sparber March 28, 2024 Page 49 of 93

The D# values are the logical pins recognized by the software. The physical pins

are shown in the above color graphic. I2C uses pin 3 for Serial Clock so we can’t

use D3. Serial Data is on pin 2 so we can’t use D2. There is also a 10K pull up on

RESET.

15 See page 37 for details.

Arduino D# Outputs Signal Destination

0 AZO

4 AA

5-10 Display15

R. G. Sparber March 28, 2024 Page 50 of 93

One limitation of the Pro Micro is the number of input/output pins. This is easily

solved by adding a MCP23017 Port Expander. The device is controlled via I2C

using the Serial CLock and Serial DAta pins.

Connect pin #12 (SCL) of the expander to the Arduino SCL pin plus add a 1K

pull-up resistor to 5V.

Connect pin #13 (SDA) of the expander to Arduino SDA pin plus add a 1K pull-up

resistor to 5V.

Connect pins #15, 16 and 17 of the expander to ground (address selection).

Connect pin #9 (VDD) of the expander to 5V.

Connect pin #10 (Vss) of the expander to ground.

Connect pin #18 (RESET) through a 10K ohm resistor to 5V (reset pin, active

low).

From Adafruit: https://cdn-shop.adafruit.com/datasheets/mcp23017.pdf

GPA0-7 and GPB0-7 give a total of 16 input/output pins.

An example of how to use this device can be found at

https://github.com/adafruit/Adafruit-MCP23017-Arduino-

Library/blob/master/examples/button/button.ino#L1

https://cdn-shop.adafruit.com/datasheets/mcp23017.pdf
https://github.com/adafruit/Adafruit-MCP23017-Arduino-Library/blob/master/examples/button/button.ino#L1
https://github.com/adafruit/Adafruit-MCP23017-Arduino-Library/blob/master/examples/button/button.ino#L1

R. G. Sparber March 28, 2024 Page 51 of 93

We must include two header files

available from Adafruit: wire.h and

Adafruit_MCP23017.h. The file

“wires.h” sets up the I2C interface.

Port Expander Input

Name

Virtual

pin#

Physical pin

Signal

Source

GPA0 0 21 Zone 1

GPA1 1 22 Zone 2

GPA2 2 23 Zone 3

GPA3 3 24 Zone 4

GPA4 4 25 Zone 5

GPA5 5 26 Zone 6

GPA6 6 27 PAB

GPA7 7 28 CAB

GPB0 8 1 LS

GPB1 9 2 Flow

This leaves 6 spare virtual I/O pins (10 - 15) on the port expander. I use three of

them as outputs of a flow simulator:

Port Expander Input

Name

Virtual

pin#

Physical

pin #

Description

GPB2 10 3 Half of nominal

GPB3 11 4 nominal

GPB4 12 5 Twice nominal

This flow simulator will generate a square wave of 50% duty cycle and output the

above 3 signals as long as the program is running. The cycle rate of the loop is

divided by the FlowSimulatorDivider value. Additionally, jumpers exist that can

pull Zone 1’s and/or Zone 2’s input to ground to simulate it/them going active.

R. G. Sparber March 28, 2024 Page 52 of 93

The rectangles represent the position of the jumper

blocks. I can select twice nominal flow, nominal, or half.

When not testing, the jumper connect to the flow sensor.

I can also switch between simulate active and normal for

zones 1 and 2. As shown, zone 1 is in normal operational

mode while zone 2 is simulated active.

This simulation subsystem was invaluable for debugging the code.

R. G. Sparber March 28, 2024 Page 53 of 93

The Liquid Crystal Display
I am using a Sparkfun Basic 16x2 Character LCD - Black on Green 5V for $14. It

can be controlled with 6 pins as shown in

https://www.arduino.cc/en/Tutorial/HelloWorld?from=Tutorial.LiquidCrystal

Support circuits include a 10K ohm contrast control potentiometer and 220 ohm

backlight power resistor:

https://www.arduino.cc/en/uploads/Tutorial/LCD_Base_bb_Schem.png

LCD

Inputs

LCD

pin

Pro Micro

Outputs, D#

RS 4 5

EN 6 6

DB4 11 7

DB5 12 8

DB6 13 9

DB7 14 10

https://www.arduino.cc/en/Tutorial/HelloWorld?from=Tutorial.LiquidCrystal
https://www.arduino.cc/en/uploads/Tutorial/LCD_Base_bb_Schem.png

R. G. Sparber March 28, 2024 Page 54 of 93

The Full Schematic
Here is an overview.

R. G. Sparber March 28, 2024 Page 55 of 93

The zone wires from the Irrigation Controller pass through but are monitored. The

Common wire goes into the FMC and back out. All of these wires go into Cable 1

that runs out to the zone valves.

Power from the wall wart feeds the 5 volt regulator along with the relay and

piezoelectric beeper, not shown here.

The Light Senor runs through a two conductor cable a short distance to where it

can see daylight.

R. G. Sparber March 28, 2024 Page 56 of 93

The six zone interface circuits are

identical. Note that zone interface 1 shows

all detail and the rest are identical except

for the names of the components. When 24

VAC is seen on a zone line, the interface

sends a logic 0 to the port expander.

R. G. Sparber March 28, 2024 Page 57 of 93

The port expander, MCP23017, outputs test flow signals that are selectable via

optional jumpers. It accepts inputs from the clear all alarms and PEST audible

alarms buttons.

The Pro Micro Arduino controls the port expander via the I2C which consists of the

Serial Data (SDA) and Serial Clock (SCL) lines. It drives the piezoelectric beeper

via R1 and Q3 plus the relay via R9 and Q4. And finally, it drives the Liquid

Crystal Display.

R. G. Sparber March 28, 2024 Page 58 of 93

Bill Of Materials
Estimated cost is $80 plus the cost of the Badger flow meter, cable, and enclosure.

Name Quantity Description Notes

R1 1 50 ohms 1/8W Mouser.com

R1.1 - R1.6 6 5.6K 1/4W Mouser.com

R2.1 - R2.6 6 1.5K 1/8W Mouser.com

R3 1 10K 1/8W pot Mouser.com

R4, R5, R9, R10, R12 5 10K 1/8W Mouser.com

R6, R7 2 1K 1/8W Mouser.com

R13 1 220 ohms Mouser.com

R8 1 100 ohms 1/4W Mouser.com

R11 1 2.2K 1/8W Optional

R14 1 5K 1/8W pot Mouser.com

R15.1-R15.6 6 4.7K 1/8W Mouser.com

C1 1 10 uf 10V electrolytic Mouser.com

C2, C3 2 0.1 uf Mouser.com

Q1.1 - Q1.6, Q2.1 - Q2.6, Q3, Q4 14 BC550B or any general purpose

NPN

Mouser.com

D1 1 any general purpose diode Mouser.com

LED 1 any general purpose LED optional

RELAY 1 OUAZ-SS112D,900 Mouser.com

LIGHT SENSOR 1 ALS-PT19 Adafruit.com

HALL EFFECT DEVICE 1 US5881UA Mouser.com

PRO MICRO 1 Arduino Sparkfun.com

PORT EXPANDER 1 MCP23017 Adafruit.com

PIEZO 1 254-20C6-ROX Mouser.com

LCD 1 LCD 00709 Sparkfun.com

PUSH BUTTON 1 AND 2 2 any general purpose low power

PERFERATED CIRCUIT BOARD 2 As needed

CABLE 1, CABLE 2 As needed

FLOW METER 1 BADGER MODEL 25 eBay.com

FLOW SENSOR ENCLOSURE 1 See page 34

FLOW MONITOR AND

CONTROL ENCLOSURE

1 Your choice

5V Regulator 1 833-MC7805CT-BP Mouser.com

12VDC at 500 mA unregulated

power supply

1 Your choice

jumper 3 Two terminal blocks optional

R. G. Sparber March 28, 2024 Page 59 of 93

Software
We have 6 zones. Normally no

more than one zone is on at a

time. Any zone can have a flow

that is too low or too high.

Depending on the fault, we

might be able to stop excessive

flow. At any time there can be a

change in active zone or in fault

state.

The result is similar to a pinball machine with many possible

states. For example, zone 1 might be running normally while

zone 4 is in underflow and zone 5 is in overflow but

controlled. The software must deal with all of these

situations. Appendix 5 contains a list of my test cases. All of

these cases passed but that does not mean the software is free

of bugs.

https://www.google.com/imgres?imgurl=http://media.gettyimages.com/photos/lucky-pinball-machine-made-by-williams-usa-20th-century-picture-id530027659&imgrefurl=http://www.gettyimages.com/detail/photo/lucky-pinball-machine-made-by-williams-usa-high-res-stock-photography/530027659&docid=JjGaBQTH9CVN1M&tbnid=dExqklZzbgknpM:&vet=10ahUKEwjj4O7X5qLYAhUG-GMKHaHKA5wQMwi0AiheMF4..i&w=697&h=1024&bih=672&biw=1422&q=pinball%20machine&ved=0ahUKEwjj4O7X5qLYAhUG-GMKHaHKA5wQMwi0AiheMF4&iact=mrc&uact=8

R. G. Sparber March 28, 2024 Page 60 of 93

Overall Software Strategy
Control constantly circulates between learning

what is going on, determining what to do, and

acting. This is a “polling” strategy which I prefer

over an interrupt driven scheme. With polling, the

software’s behavior is known at all times. This

makes debugging easier.

An essential requirement is that each cycle through the loop take place faster than

the time variant inputs change. Otherwise the real world’s behavior will be missed

by the software.

 You have seen a bowl of cooked spaghetti. The strands are

easily identified but not the ends. Of course, there is no

“logic” to it. As my software was evolving, it was starting

to look like spaghetti. Debugging and even comprehension

quickly became too difficult for me.

Life got better when I re-architected the code into functions. For example, Timer

Control contains all timers. If another function wants to start, stop, or read a timer,

it must send a flag. In this way, I always know to look at Timer Control if there is a

problem with timing.

When a flow measurement is taken, I define a “token”. This

token says the measurement is valid. If the token is used to

inform the user via the LCD, it is still valid. But when the data

is used to make a state change, the token becomes invalid and

the data is ignored. This scheme prevents old data from being

reevaluated while we collect new data.

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiWwNTG9rjVAhVT0GMKHRX0A0wQjRwIBw&url=http://www.bigkidsmallcity.com/2014/12/quick-easy-dinner-simple-spaghetti-holiday-veggies/&psig=AFQjCNGLRBHFABSGKKGMwkFr2MqRF6zreA&ust=1501776227882110

R. G. Sparber March 28, 2024 Page 61 of 93

Many timers are used. In some cases I just need to know that a given timer is

running. In other cases I need to know when it starts and when it ends. Flags are

defined in the Timer Control subroutine and used by the rest of the code.

If you make it all the way down to the code, you will see that I have taken full

advantage of variables and subroutine naming freedom. These tags have been

selected to help me remember what is going on. For example, The subroutine used

to get zones states is called GetZoneStates(). My flag that tells me I just set the

inhibit flag active is called JustSetInhibitActive. These long names are removed

during compilation so do not take up space in the Arduino’s memory. By using

copy and paste, I avoid typing them more than once.

R. G. Sparber March 28, 2024 Page 62 of 93

Level 1 Flowchart
When viewed for the first time, I’m sure there is an urge to just turn the page. If

you just want to run the code, there is no need to go further. But if you want to

understand the code, here is the first step.

R. G. Sparber March 28, 2024 Page 63 of 93

When the program starts for the first time, it has no

flow data on each zone. After it has run each zone, that

data exists.

Starting at “No zones

active”,

we go to “zone n active”.

The flow is measured for

60 seconds. When done, we

see if the zone’s valve was

closed due to a previous

fault. If it was not, we see if

this zone has ever run

before. If this is the first

time, we have no historical

flow data so cannot judge if

there is a problem. If it has

run before, we know what

“nominal16” means so start

judging the flow. If the

flow is below 70% of

nominal, we have

Underflow and set Minor

Alarm for this zone. Then

we start the cycle over.

If Above nominal by more

than 30%, we close the

valve every time this zone

is active. Then we start the cycle over.

If the flow is within 30% of nominal, it is ok and we start the cycle over.

16 "nominal" uses too many characters on my LCD so I use "ref" there.

R. G. Sparber March 28, 2024 Page 64 of 93

If the valve has been closed

when this zone is active, we

check if it was just closed. If

it was, we say the zone is in

Overflow and then see if the

flow is below the leakage

limit.

If closing the valve did not

turn off the flow, we go to

Major Alarm and wait for

human intervention. We

have an uncontrolled flow.

If closing the valve turned

off the flow, we call out a

Minor Alarm for this zone.

As we repeat the cycle, this

zone is defined as in

Overflow with Minor Alarm.

On the next pass, we again

measure the flow and see

that the valve has been

closed. But now we see that

the valve has not just been closed. If the flow is still less than Leakage, the cycle

repeats. If the flow is now greater than Leakage, we retire the Minor Alarm and

escalate to a Major Alarm and wait for help to arrive.

If a zone is in Overflow Minor alarm, every time it runs the FMC blocks the flow.

R. G. Sparber March 28, 2024 Page 65 of 93

When a zone turns off, we

first check if it is in an

alarm state. If not, we save

the flow data collected

while it was running and

store that as the new

nominal for this zone. If

there is an alarm state for

this zone, we do not save

the flow data.

When no zones are active,

we constantly check that

the flow is less than the

leakage limit (green arrow).

If excessive leakage is

detected, we go to Major

Alarm and wait for help.

R. G. Sparber March 28, 2024 Page 66 of 93

The automatic operation

of the RainBird Irrigation

Controller only turns on

one zone at a time.

However, it is possible

for a user to turn on more

than one zone. In this

case, which I call

MultiZone, we just wait

until less than two zones

are on.

If all zones are active at

the same time, we

probably have a problem

with our relay. If so, we

turn it on and off quickly

20 times and check again.

If we are then seeing less

than all zones active, we

return to normal

scanning. If we still see

all zones active, we go to

hardware fault Major

Alarm. Then we return to

scanning just in case the

relay corrects itself. If so, the hardware fault Major Alarm is retired.

R. G. Sparber March 28, 2024 Page 67 of 93

Four secondary functions

are not shown in this

flowchart.

The first is the display

function. See the User’s

Manual, starting on page

14 for what is shows. See

also Appendix 4 which

explains how I prevent

flickering of the display.

The second secondary

function is audible

alarms. A Minor Audible

alarm sounds for 0.3

seconds and is off for 2

seconds. A Major

Audible alarm sounds for

0.1 seconds and is off for

0.1 seconds. At any time,

the user can push the

PEST audible alarms

button and it will bring

silence.

The third secondary function clears all alarms. All variables are initialized except

for historical flow data. If a fault condition still exists, it will return in 70 seconds.

The forth secondary function clears all alarms and historical flow data. This would

be used if a change was made to the flow rate that was more than 30% from

nominal. The FMC is powered down, the clear alarm button held down, and power

is brought back up. Then the clear alarm button is released.

R. G. Sparber March 28, 2024 Page 68 of 93

Major Subroutines
Here you see the main subroutines that are in the loop and the subroutines called

from them.
GetZoneStates()

 InitializeZone()

 PopulateZones()

FindActiveZone()

ZonePower()

TimerControl()

 TransientTimeElapseTimer ()

 OneMinuteElapseTimer ()

MinorPestElapseTimer ()

MajorPestElapseTimer ()

MinorCadence()

MajorCadence()

AntiFlickerCadence()

ZoneTransitionQ()

 SaveOldZoneFlowMeasurement()

 PrepareForNewZone()

ProcessFlowInfo()

GetFlowRate()

DisplayFlowRate()

SuspectRelay

MoreThanOne()

PossibleFault()

NoZoneOnAndNoDataYet()

NoZoneOnWithData()

ActiveZoneNoDataYet()

ZoneActive()

JudgeFlowRate()

MajorAlarm

MultiZoneQ

NoFlowDataQ()

NoHistoryQ()

SmallFlowQ()

UnderflowQ()

OverflowBeforeInhibitQ()

ImmediatelyAfterInhibitFaultQ()

AfterInhibitStableFaultQ()

LeakageNoZonesActiveQ()

RelayErrorControl()

AlarmControl()

CleanUpPrematureAlarmExitQ()

DisplayFaultDetails()

 RelayErrorQ()

CABpressed()

SoftwareError()

CannotStop()

Trying()

HaveMinor()

ManuallyClearAlarmQ()

PestActiveAlarmQ()

AudibleAlarmProcessing()

R. G. Sparber March 28, 2024 Page 69 of 93

GetZoneStates() looks at all of the zones and reports back which ones are active.

To do this it calls three subroutines:

 InitializeZone()

 PopulateZones()

FindActiveZone()

ZonePower() turns the relay on and off under the control of an array of Inhibit

flags. If the Inhibit flag for the active zone is true, then the relay is powered up and

power is removed from this zone’s valve.

TimerControl() handles all timers including the transient timer, the one minute

timer, PEST timers, and audible alarm cadence timers. Timers that only run when

needed are initiated by telling them to start. When they start, the clear the start flag

and raise a running flag. When timed out, the running flag is lowered.

ZoneTransitionQ() looks at the previous active zone and the current active zone to

see if there has been a zone transition. If so, it looks to see if the previous active

zone had a fault. If not, it saves the flow data as the new historical flow. If there

was a fault, it does not save the flow data. Then it prepares for the new zone being

active.

ProcessFlowInfo() performs three major tasks. First it measures the flow rate, then

it displays the flow rate, and finally, it judges the flow rate to see if it is normal or

faulted. The subroutine SmallFlowQ() checks the historical flow for the active

zone in order to prevent a division by 0.

RelayErrorControl() displays a message if the relay is stuck.

AlarmControl() handles all alarms associated with flow. This includes displaying

fault details, responding to a manual clear alarms request, responding to a PEST

audible alarm request, and controlling the audible alarm.

R. G. Sparber March 28, 2024 Page 70 of 93

Software Structure
Although it is possible to have multiple files that together hold the Arduino

software, I have chosen to put it all in one file to minimize confusion and error.

Separate files must be loaded is a specific order to link correctly.

The following is an outline of how I ordered the segments of the program. Note

that variables and constants defined outside of functions are accessible by all

functions which is why you see so much going on before we reach Setup.

▪ Program name and version number - they are displayed at start up on the LCD

▪ #include - pulls in libraries that define hardware. In my case I have EEPROM,

an LCD display, and a port expander chip that uses I2C.

▪ Constants and variables

• MCP23017 port expander inputs

• Arduino Outputs

• States of the hardware and software

• Timers

• Rate of change of flow parameters

• Flow level parameters

• Input states like “Day” versus night and a button being pushed or not

• Faults that are recorded and processed

• Software error descriptions

• LCD flicker reduction parameters

• Diagnostic and built in simulator parameters

▪ Hardware Initialization - port expander and LCD

▪ Void Setup - this is where code is placed that only executes once. All of the

input and output pins in the hardware are defined here. We also look at the

pushbuttons to determine if the user wants all historical data erased or if they

want flow measuring mode enabled

R. G. Sparber March 28, 2024 Page 71 of 93

▪ Void Loop - a collection of high level subroutines that hold the major

functional blocks resides here. These subroutines are made up of lower level

subroutines defined next.

▪ Lower level subroutines - these are built from subroutines that are at the lowest

level.

▪ Lowest level subroutines - narrowly defined functions that act as my custom

made program language.

▪ End of file

An important fine point:

Looking at the code, you may spot something odd in my print commands to the

LCD. The standard command would be

lcd.print (“All alarms”);

but I wrote

lcd.print (F("All alarms"));

You are looking at the F() subroutine which I found on an Adafruit forum17. F()

tells the Arduino compiler to keep the string “All alarms” in program store rather

than duplicating it in Static Random Access Memory (SRAM). Without this

subroutine, the program runs out of memory used to store variables and strange

things happen.

For example, I was checking a small block of code because it did not seem to

execute correctly. A series of Serial.println statements told me what was going on.

I could see command 1 being reached followed by command 2. But rather than

command 3 I saw that a subroutine was called. That code did not call this

subroutine. It was corrupted memory caused by the SRAM being corrupted.

17 First try the URL: https://learn.adafruit.com/memories-of-an-arduino/optimizing-sram but if this link is broken,

search using " Adafruit managing sram F()"

https://learn.adafruit.com/memories-of-an-arduino/optimizing-sram

R. G. Sparber March 28, 2024 Page 72 of 93

Acknowledgements
Very special thanks go to my wife, Donna, for putting up with me constantly at my

computer writing and debugging the software.

Thanks to Misol from Instructables for the invaluable software plus instructions on

how to set up IFTTT.

I welcome your comments and questions.

If you wish to be contacted each time I publish an article, email me with just

“Article Alias” in the subject line.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

mailto:Rgsparber.ha@gmail.com

R. G. Sparber March 28, 2024 Page 73 of 93

Appendix 1: Zero Crossing Pulse Width

The input voltage is specified at

24V RMS but I measured 27V

RMS. Assuming 24V RMS, that is

a peak of √2 × 24𝑉 𝑅𝑀𝑆 =
34𝑉𝑝𝑒𝑎𝑘 . This means that

𝑉𝑧𝑜𝑛𝑒 𝑛 = 34 sin 𝜔𝑡 where 𝜔 =
2𝜋𝑓 = 2 × 3.14 × 60 𝐻𝑧 =

377
𝑟𝑎𝑑𝑖𝑎𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
. Assuming Q1 turns on

when Vzone n is more than 2V, we

can solve for t and see the width of

the spike. Be sure your calculator is

set to radians and not degrees for

the following calculations.

2𝑉 = 34𝑉 sin 377𝑡
2

34
 = 0.06 = sin 377𝑡

377𝑡 = sin−1 0.06

377𝑡 = .06

𝑡 = 160 microseconds.

AT t = 0, 𝑉𝑧𝑜𝑛𝑒 𝑛 = 0. At t = 160 microseconds, it is at

+2V and Q1 turns on.

The 60 Hz sine wave has a period of 16.67 milliseconds.

This means it goes through half of its cycle in 8.33

milliseconds. 160 microseconds before 8.33 milliseconds,

Q1 has turned off. Then 160 microseconds after 8.33 milliseconds Q2 turns on. This

says I will have both transistors off for about (2 × 160 =) 320 microseconds every

8.33 milliseconds. With both transistors off, the digital output goes high. So if the

software sees a logic 1, it just has to wait more than 320 microseconds and take

another reading to be sure it didn’t hit this crossover zone.

R. G. Sparber March 28, 2024 Page 74 of 93

Appendix 2: EEPROM Map
The Electrically Erasable Programmable Read-Only Memory (EEPROM) present

inside the Arduino device will hold two seven member arrays of data.

The first array is ZoneNeverRun. It is initialized to all elements true. As each zone

is run for the first time and historical flow data collected, that element will be set to

false. Each element is defined as boolean so takes one byte.

We have:

 ZoneNeverRun[i] with i equal any integer from 0 to 6. It occupies EEPROM at

memory locations 0 through 6.

To write to this array, we will use the subroutine WriteZoneNeverRun(). To read

this array, we will use the subroutine ReadZoneNeverRun().

The second array is HistoricalFlow[i]. It is not initialized. Instead, we only look at

a given element when ZoneNeverRun[i] says HistoricalFlow[i] has valid data. As

each zone is successfully run, the measured data is written into this array. Each

element is defined as float so takes four bytes.

We have:

HistoricalFlow[i] with i equal any integer from 0 to 6. It will occupy EEPROM at

memory locations 7 through 28.

To write to this array, we will use the subroutine WriteHistoricalFlow(). To read

this array, we will use the subroutine ReadHistoricalFlow().

R. G. Sparber March 28, 2024 Page 75 of 93

Appendix 3: Arduino Compilation Error Experiences

It has been a while since I programmed an Arduino so ran into many “newbie”

problems. The most confusing were the error messages when my code was not in

the sketch book folder. I saw many errors due to files I just included and even one I

didn’t include. They went away once I moved my code to the sketch book folder.

After working through way too many typos in my program, I ran into two

compilation errors related to code supplied by Sparkfun and Adafruit.

The first error was

“main.cpp:43 undefined reference to ‘setup’

Collect2.exe: error: ld returned

1 exit status

A search of the web turned up others with this problem plus a solution that worked

for them. Going to the file main.cpp line 43 I found

setup();

I was instructed to add “void”

void setup();

After switching to Administrator mode, I was able to save the change.

The second error was

EEPROM.h:43:30: warning: type qualifiers ignored on function return type [-

Wignored-qualifiers]

operator const uint8_t() const { return **this; }

I learned that EEPROM.h had two bugs in it. On line 43 was

operator const uint8_t()

The expert said to remove “const”.

R. G. Sparber March 28, 2024 Page 76 of 93

I then was instructed to go to line 92

operator const int() const

and remove the first “const”. The modified file was then saved. The compilation

was then error free.

R. G. Sparber March 28, 2024 Page 77 of 93

Appendix 4: Anti-flicker

The software is constantly running in a loop. If a given LCD screen is written, it

will be re-written on each pass. This is both bad and good. It is bad because doing

many updates each second causes the LCD to flicker annoyingly. However, it is

good because any corruption of the LCD’s displayed data is quickly corrected. The

trick is to do updates often, but not too often. I have found that an LCD refresh

every 10 seconds is about right.

The strategy I chose was to maintain a unique name for each LCD screen plus have

a global flag that presents the opportunity to do an update only every 10 seconds.

This flag is part of the TimerControl() subroutine.

We have two types of LCD screens. The simpler one is just text. I can describe it

with a constant. For example:

const int TryingToClose = 25;

TryingToClose has been assigned an arbitrary but unique value of 25.

I also have screens that display text that doesn’t change mixed with numbers that

do change. In these cases, I assign them an arbitrary but unique value that has the

changing number added to it. For example, NoZoneOnWithGPMConstant is

assigned a unique number to represent the No Zone On screen. I generate the

complete screen name by adding the displayed GPM with the result saved as

NoZoneOnWithGPMC.

I keep track of the current LCD screen with the variable lcdNowDisplaying.

When the software is about to print a screen, it checks if the new screen differs

from the old screen or if it is time for an update. If either is true, the LCD screen is

refreshed. The one exception is when the software has closed the valve and is

waiting to see if the flow is now near 0. While displaying the “Trying to close

valve” screen, I block all non-alarm screens. Otherwise, I would get alternating

screens which is unreadable.

R. G. Sparber March 28, 2024 Page 78 of 93

Appendix 5: Test Cases
The following Cases are designed to fully test the software so are detailed. There

were developed in parallel with creating the flow charts and thinking about how

my irrigation runs and fails.

“Start” means all variables have been initialized. This is done by powering off,

holding down the clear alarms button, powering on, and then releasing the button.

When a zone is first turned on, the software waits 10 seconds for the flow to

stabilize. It then takes 60 seconds to measure the flow. I am using the built in flow

simulator which generates half nominal, nominal, and twice nominal flow rates.

In all cases, m does not equal n.

Non-fault Cases
1. Start to no zones on for 65 seconds.
2. Start to zone n on
3. Zone n on with nominal flow. Zone n off. Zone n on with nominal flow. See

that nominal flow becomes reference. Turn off power. Hold down Clear all

alarms button. Power up. See that historical data removed. Zone n on with

nominal flow and see that ref is - .
4. Zone n on. Nominal flow for 1.5 minutes. Zone n off. Zone m on.

Nominal flow for 1.5 minutes. Zone m off. Zone n on for 75
seconds. Zone n off. Zone m on for 75 seconds. Zone m off.

5. MultiZone (more than one zone on)
a. Before start have zones n and m on. Start.
b. Zone n on. Zone m on. Zone m off.
c. Zone n on. Zone m on. Zone n off.

6. No zones on to more than one zone on
7. No zones on to zone n on for first time with nominal flow. See that ref is - .
8. No zones on to zone n on not first time. See that ref has nominal after it.

R. G. Sparber March 28, 2024 Page 79 of 93

Fault Cases
A. Single fault

1. No zones on and then flow > leakage so go to “Can’t stop flow.” Major.

Press Clear All Alarms.
2. Zone n on with underflow. Then pest.
3. Zone n on with underflow. Zone m on normal flow.
4. overflow

a. Zone n on with overflow minor .Then pest. Zone n off. Zone n.
b. Zone n on with overflow minor .Then pest. Zone m on with

nominal flow for 75 seconds. Zone m off. Zone n on.
c. Zone n on with overflow major. Then pest. Zone m on. Zone m

off.
B. Sequential Double fault on same zone

a. underflow
1. Zone n on with underflow. Then pest. Then overflow minor and

should hear minor audible alarm. Then pest. Then clear all alarms.
2. Zone n on with underflow. Hear minor. Then pest. Then overflow

major. Hear major audible alarm. Then pest. Then clear all alarms.
3. Zone n in underflow. Hear minor. Then pest. Then zone n off; zone

m runs normally.
4. Zone n in underflow. Hear minor. Then pest. Then zone n off; zone

m goes into underflow. Hear minor. Then pest.
b. Zone n on with overflow minor. Hear Minor audible alarm. Then pest.

Then overflow major. Hear major audible alarm. Then pest.
C. First zone faults and then turns off. Second zone on and faults.

1. Underflow
a. Zone n in underflow and then zone n off; zone m goes into

overflow minor
b. Zone n in underflow and then zone n off; zone m goes into

overflow major
2. Overflow

a. Zone n in overflow minor and then zone n off; zone m runs

normally
b. Zone n in overflow minor and then zone n off; zone m goes into

underflow
c. Zone n in overflow minor and then zone n off; zone m goes into

overflow minor
d. Zone n in overflow minor and then zone n off; zone m goes into

overflow Major

R. G. Sparber March 28, 2024 Page 80 of 93

e. Zone n in Overflow Major. Turn off zone n. Turn on zone m

nominal flow. Wait 1.5 minutes. Zone m off. Should stay in

Overflow Major.
3. Interrupted flow measurement

a. Zone n on. Flow < 0.7 X nominal. While measuring flow, turn on

zone m. Then turn zone m off. Zone n should return to start of

measuring.
b. Zone n on. Flow = nominal. While measuring, turn on zone m.

Then turn zone m off. Zone n should return to start of measuring.
c. Zone n on. Flow > 1.3 X nominal. While measuring, turn on zone

m. Then turn zone m off. Zone n should return to start of

measuring.
4. Interrupted Inhibit processing

a. Zone n on. Flow > 1.3 X nominal. When valve first closed, zone n

off. Flow = nominal. Zone m on.
b. Zone n on. Flow > 1.3 X nominal. When valve first closed, Zone m

on. Zone m off. Zone n should go to Overflow Minor.

R. G. Sparber March 28, 2024 Page 81 of 93

Appendix 6: Sending Emails
After the system had been in service for a few years, I decided to add the ability to

send emails. This was accomplished with new hardware and new software.

The Initial Design
The hardware consists of an Adafruit Huzzah that contains an ESP8266. It costs

about $10.

A small amount of new software has been added to the Pro Micro. New software

runs on the ESP.

A critical part of this software came from an Instructable. I do not understand all of

this code but the author, Misol, made it clear what to change to adapt it to my

needs. As of 7/4/2020 https://www.instructables.com/id/ESP8266-to-IFTTT-

Using-Arduino-IDE/#discuss worked. Thank you Misol!

The email is generated by the company called IFTTT (If This Then That). Since

only I am receiving this email, there is no charge.

 The Pro Micro outputs data via a homemade serial link to the Huzzah. GPIO 15 is

my serial clock and 16 is my serial data. The Pro Micro runs at 5V so these signals

are bounded by 0 and 5V.

The Huzzah runs on 5V18

but is not 5V logic tolerate.

I therefore had to add a

voltage divider on each

signal path. It accepts the

serial clock on GPIO 4 and

serial data on GPIO 5. Each

divider consists of a 470

ohm resistor from a Pro

Micro pin to an Huzzah pin.

A 680 ohm resistor connects from each Huzzah pin to ground. When the Pro Micro

puts out 5V, the Huzzah will see, nominally, 3V. These low values of resistance

where chosen to minimize the effects of input capacitance which will slow the

falling edge of the clock.

18 The Huzzah has an on board voltage regulator that accepts 4 to 6V and outputs 3.3V to run the board.

https://www.instructables.com/id/ESP8266-to-IFTTT-Using-Arduino-IDE/#discuss
https://www.instructables.com/id/ESP8266-to-IFTTT-Using-Arduino-IDE/#discuss

R. G. Sparber March 28, 2024 Page 82 of 93

Only one byte must be sent from the Pro Micro to the ESP. I chose to write

subroutines to support this function because

they are simple and, in this way, fully

understood by me. That is invaluable during

debugging. The data rate can be very slow

given that, typically, only 8 bits will be sent

per day.

Notice that my clock has a period of 40 ms. It

takes 8 x 40 ms = 320 ms to send one byte.

That translates to a blindingly fast 0.000003

megabytes per second.

This delay is of no consequence given that it triggers an email to the user who, at

most, will place a phone call. Even a few minutes of delay would not matter. This

slow rate means that no special realtime coding is needed to handle the clock and

data.

The byte is defined in the Pro Micro, sent to the ESP, which sends corresponding

text to IFTTT. An “applet” in my IFTTT account sends this text to the defined

email address.

The byte is broken down into fields:

State Sub-state zone

System normal [00] heartbeat [00] Null [0000]

System normal [00] Just powered up [01] Null [0000]

System normal [00] All alarms cleared [10] Null [0000]

System normal [00] Alarm Silenced [11] Null [0000]

Minor alarm [01] Underflow [01] 1-6

Minor alarm [01] System failure [10] Hardware [0000] or

software [0001]

Minor alarm [01] Overflow [11] 1-6

Major alarm [10] Can’t stop flow [00] No zones active

[0000]

Major alarm [10] Can’t stop flow [00] 1-6

Maintenance [11] Historical data[00] [0000]

A Minor alarm triggered by Overflow in zone 3 is 01110011.

R. G. Sparber March 28, 2024 Page 83 of 93

Correcting Deficiencies
Murphy’s Law is my constant companion. A few months ago I was out of town for

a week. Upon arrival, I realized that I was not receiving my morning status emails.

I then realized that it had been a few days before leaving that the emails had

stopped. To address this second problem, I generated an automatic reminder on my

phone to verify I received this email each day.

Once I determined I had a failure, I needed to add fault recovery to the system.

This development did not start with a full set of requirements. I developed what I

thought I needed, found it lacking, and then added more code. The key is that I

held to the software architecture already defined. My final design has these feature:

• Any function can send a byte that will be translated into predefined text by

the ESP. Under non-fault conditions, this is once per day. A fault occurs

every few months.

• Once an hour, the Pro Micro pings the ESP and gets an acknowledgement

(ACK). It indicates if the ESP is down, WiFi was down while sending the last

message, or Maker was down while sending the last message. The Maker is

IFTTT.

• When WiFi or Maker is down, we send recovery emails until ACK comes

back without a failure.

o A recovery email states that the failed element is now back up. If the

email makes it to the user, the failed element must be back up. If the

email doesn’t arrive, the user is none the wiser.

o When the fault clears, the last email that encountered a fault is resent.

• The FMC’s LCD displays three letters in the upper right corner indicating

o an Acknowledgement Failure (AkF) – the ESP is down

o WiFi Failure (WfF)

o Maker failure (MkF).

These indicators persist even when the fault goes away. This permits me to

see intermittent problems. The last fault is the one displayed.

• Any of these failures also generates an audible alarm. The audible alarm

consists of two chirps within 0.3 seconds followed by 2 seconds of silence. I

chose two chirps so it would not sound like a smoke alarm battery going

dead. As with all audible alarms, they can be silenced by the user. Unlike

other audible alarms, it remains silenced until the alarm manually is cleared.

R. G. Sparber March 28, 2024 Page 84 of 93

No Hardware Additions

The first challenge was that I didn’t want to add any hardware. I had the Serial

Clock and Serial Data interface shown on page 81. The Pro Micro’s pins were set

to outputs and the Huzzah’s were inputs. My solution was to have the Pro Micro

send the byte and then change its Serial Data and Serial Clock pins from output to

input. The Huzzah would receive the byte and change its inputs to outputs. Then it

would drive these pin high or low for 50 ms. After this time, the Huzzah would

switch back to being an input. The Pro Micro would see this as a logic zero due to

the 680 ohms pull down resistors. I empirically found that the Pro Micro could not

see a pulse less than about 20 ms so I made the pulse 50 ms wide. This delay,

encountered once per hour, has minimal effect on the system’s functionality.

As previously mentioned, the Pro

Micro uses 5V logic and the

Huzzah uses 3V logic. These two

voltage dividers translate 5V

logic levels to 3V logic levels as

the Pro Micro outputs clock and

data to the Huzzah.

The challenge was to get the Huzzah to talk back to the Pro Micro without adding

hardware. It turns out that Pro Micro inputs are compatible with 3V logic. So when

I change GPIO 5 and 4 from inputs to outputs, The Pro Micro can switch from

outputs to inputs and receive these state.

This ‘scope picture shows the tail end of

the command from the Pro Micro to the

Huzzah. The top trace is serial data and the

bottom is serial clock. At the center of the

screen, the last clock pulse goes low. The

Huzzah decodes the command and

generates the ACK. Since all is well, it

sends back “11” which means the Huzzah

is up plus WiFi and the Maker were up the

last time we sent a message to the Maker.

These pulses stay high for 50 ms which is

enough time for the Pro Micro to read

them. When the Huzzah is done sending

R. G. Sparber March 28, 2024 Page 85 of 93

these pulses, it reconfigures back to being inputs. This is the same as sending logic

0 as far as the Pro Micro is concerned. After the Pro Micro sends the last bit of the

command, it changes to inputs and waits 25 ms. Then it reads Serial Data (SDA)

and Serial Clock (SCL). After waiting 30 more ms, it reverts to outputs on these

pins.One minor mystery is that the logic ones from the Huzzah start at 3.0v and

rise to about 3.2V after 20 ms. It is harmless but I can’t explain this behavior.

SDA SCL

0 0 ESP is down (i.e. no response from the ESP)

0 1 ESP is up but WiFi is down. Therefore, Maker can’t be reached

1 0 ESP is up, WiFi is up, but Maker is down

1 1 ESP is up, WiFi is up, Maker is up

I have chosen the numerical values of each state so the Pro Micro can read SDA

and SCL and then directly convert them to their value:

ackStatusByte = (digitalRead(IoT_SDA)*2)+ digitalRead(IoT_SCL)

Fault Recovery Overview

The Pro Micro will send a ping to the Huzzah once per hour. When there are no

irrigation faults, a message is sent to the Huzzah each dawn. If, in the previous

hour, there was a fault in the WiFi or Maker, the dawn email will be told of the

problem. If the Huzzah just went down, the Pro Micro will know as soon as it

sends the Huzzah a byte.

This fault coverage is good enough. There is no need to continuously report back

the current state of the WiFi or Maker. I just need to know it had a problem

recently. When emails can be successfully sent again, the last email that was lost is

resent so it is not lost. If the ability to send emails never comes back, I detect this

by the loss of my dawn email.

R. G. Sparber March 28, 2024 Page 86 of 93

Pro Micro Function Descriptions

loadQueue(byte messageByte)

All messages generated in the Pro Micro, the master, are put on this queue if it is

not full. If the queue is full, which is very unlikely, the newest messages are tossed.

If the message is ESPpingHeartbeat, it is put in the queue and we return.

If the message is not ESPpingHeartbeat, it is put in the queue followed by a

messageDisposition. This scheme lets us know of any faults in the email

generating message.

When a messageByte is received, it is placed in the next available position. When

the queue is unloaded, the message position 1 is returned. This means that the first

in is the first out.

Input: messageByte

Output: the array messageQueue[] is populated

R. G. Sparber March 28, 2024 Page 87 of 93

sendMessageToESPandGetACK_Q()

Each time this function is called, it can send one message to the ESP. Messages

will be sent every IoTIntervalMsUlong until the queue is empty.

The message just sent is saved in messageJustSentByte and is used if it

encountered a fault to indicate which faults are timely. When the fault clears,

lastStatusOrAlarmEmailSentByte will be put back on the queue followed by a

messageDisposition.

 State Sub-state zone

System normal [00] heartbeat [00] yesterday’s water usage/10 [gggg] at dawn

System normal [00] Just powered up [01] [0000]

System normal [00] All alarms cleared [10] via button push [0000]

System normal [00] All alarms cleared [10] via leaving the instant flow function [0001]

System normal [00] All alarms cleared [10] automatically at midday [0101]

System normal [00] recovery email [10] ESP came back up [0010]

System normal [00] recovery email [10] WiFi came back up [0011]

System normal [00] recovery email [10] Maker came back up [0100]

System normal [00] Alarm Silenced [11] [0000]

Minor alarm [01] Underflow [01] 1-6 [0001 through 0111]

Minor alarm [01] System failure [10] Hardware [0000], software [0001]

Minor alarm [01] Overflow [11] 1-6 [0001 through 0111]

Major alarm [10] Can’t stop flow [00] No zones active [0000]

Major alarm [10] Can’t stop flow [00] 1-6 [0001 through 0111]

Maintenance message [11] Historical flow data reviewed [00] [0000]

Maintenance message [11] Local heartbeat [01] [0000] Pro Micro pings ESP

Maintenance message [11] Local heartbeat [01] [0001] messageDisposition

message queue empty [11] [11] [1110] not sent

message queue full [11] [11] [1111] not sent

In all cases where a message is actually sent, the ack will be evaluated:

ackStatusByte will have one of these values

espDownByte

R. G. Sparber March 28, 2024 Page 88 of 93

espUp_WiFiDownByte

espUp_WiFiUp_MakerDownByte

espUp_WiFiUp_MakerUp_Byte
void detectESP_ACK()

SDA and SCL are used to send the ESP a message. To perform an ACK, both are

changed to outputs at the ESP end for 50 ms and then changed back to inputs.

SDA SCL

0 0 ESP is down (i.e. no response from the ESP)

0 1 ESP is up but WiFi is down. Therefore, Maker can’t be reached

1 0 ESP is up, WiFi is up, but Maker is down

1 1 ESP is up, WiFi is up, Maker is up

The result of the ACK is put into ackStatusByte.

When ackStatusByte transitioned from faulted to ATP, emailJustCameBackBool is

set true.

previousAckStatusByte is compared to the current ackStatusByte to set

emailJustCameBackBool

DisplayFaultDetails()

The newest ACK failure is displayed. ackStatusByte can change after each ACK

but my flags are only cleared manually.

 AkF ESP was not responding

 WfF WiFi was down

 MkF Maker was not responding

These three letter alerts are placed in the upper right corner of the LCD.

R. G. Sparber March 28, 2024 Page 89 of 93

processACKfaultsAndTranslateIntoArecoveryMessage()

messageJustSentByte tells us what triggered this ACK. Ping does not send an

email so is only trusted to report ESP down. messageDisposition tells us the about

WiFi and Maker faults.

If the ACK says the ESP is down, it is the current state so we act on it imediately.

If the ACK says WiFi down or Maker down, it relates to the previous message that

caused an email. Each message that causes an email is followed by a

messageDisposition. It returns the status generated by the email message so is the

one we process into a recovery message.

If the recovery message fails as detected by its companion messageDisposition, we

repeat the cycle which is set by the ping timer using pingIntervalMsUlong.

void FaultRecovery()

When ACK transitions from faulted to ATP, lastStatusOrAlarmEmailSentByte

with its messageDisposition are put back on the queue because it didn’t make it to

the user the last time it was sent.

R. G. Sparber March 28, 2024 Page 90 of 93

ESP Function Descriptions

acquiringMessageFromProMicro()

Read in byte from the Pro Micro and translate it to a text string. It only returns

when it has a new message.

translateAndsendMessageToMaker()

If data from the Pro Micro is a ping or messageDisposition, we just return.

In the process of sending a message to the Maker, we control the fault flag

makerFailedBool.

Here is how the functions relate to each other.

R. G. Sparber March 28, 2024 Page 91 of 93

Details Of the FMC to ECP Interface

The code in the FMC is generating the waveshapes on the left. On the right is the

measured signal. In this case, I have changed the clock period from 50 ms to 100

ms. Due to the voltage dividers, the FMC puts out 5V pulses, and the ESP sees 3V.

The ECP looks for the falling edge of SCL and then reads SDA.

R. G. Sparber March 28, 2024 Page 92 of 93

New Key and Its Consequences
In early 2024, IFTTT told me I had to pay for the applet used in the FMC. By

mistake, I started to pay on an account that did not hold this applet. This meant I

needed to change msy key in the ESP software. The change was trivial but also the

start of an almost four-month odyssey.

The first challenge was that the library I used to compile the code no longer

worked. I found sample code at Adafruit.com and tried it.

It wasn’t clear from their website, but the HUZZAH is the same board type as the

Adafruit “feather HUZZAH ESP8266”.

This sample code caused rolling stack dumps that included hardware resets.

Guidance from “Adafruit_support_mike”, an Adafruit employee on their

forum, suggested I find newer libraries, but I still saw the stack dumps. Then Mike

suggested that I look at power to the ESP since noise can cause this behavior

because glitches in power cause the ESP’s memory to become unreliable. I

soldered a 100 uf electrolytic across power and ground on the device, and the stack

dumps vanished. Why wasn’t this a problem before I changed the key? I don’t

know.

Next, I modified my code to include parts of the sample code. I was back to stack

dumps. I knew that the OS would trigger stack dumps if I didn’t give it given

enough realtime. I used the yield()function to hand control to the OS as often

as possible.

I was able to remove enough of my code to make this work. As I added lines back

in, it became clear that the delay(<time in ms>) function withheld control

from the OS and caused stack dumps. I wrote a new function, waitMs(<time

in ms>), that looped on yield() for the specified time. That solved the problem.

One open question was how much realtime is consumed by calling yield()? It

shouldn’t be surprising that this time varies widely depending on what the OS must

accomplish before handing back control. Typically it was less than 1 ms, but once

it was 18 ms.

As I sprinkled yield()through my code, I became concerned when I reached

realtime critical sections. I must process SCL and SDA. SCL had a period of 50

ms, so I needed to detect a pulse that was 25 ms wide and then look at SDA. A

R. G. Sparber March 28, 2024 Page 93 of 93

variation of 18 ms made this potentially unreliable. Without yield()in these

areas, the stack dumps came pouring out.

I addressed this problem by lowering the clock rate to a period of 100 ms and

permitting a pulse width variation of +/- 15 ms.

Once I resolved one software bug in processing these bits, I was back on the air.

Looking at SCL and SDA at the ESP while a ping occurred:

SCL and SDA are

fed from the FMC.

The clock period is

100 ms. The ESP

clocks in data on the

falling edge of the

clock, so we are

looking at

1101 0000. Then

the FMC changes

its outputs to inputs

while the ECP

changes its inputs to

outputs. The ECP

sends a 11 ACK

signal because both

WiFi and Maker are

operational.

1 2 8

