
R. G. Sparber October 7, 2021 Page 1 of 9

A Simulated Analog Display Using Two
LEDs, Version 1.0

By R. G. Sparber

Protected by Creative Commons.1

Conclusion
Two LEDs positioned close to each other can convey an almost

continuously varying quantity by presenting relative intensity. This

strategy is useful when precision is not required. The implementation

is software-based, using three lines of code.

Background
Consider the gas gauge on my Honda Fit. It

shows Full, has a tick mark at half, and

indicates Empty. Funny thing, I’ve owned

this car for eight years and never noticed this

sparse look. It has always shown me what I

needed to know.

The lesson here is that a high-resolution

readout for my gas tank is not warranted.

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

R. G. Sparber October 7, 2021 Page 2 of 9

My electric bike has a homemade State Of

Charge (SOC) gauge. Can I get two LEDs to

tell me how much energy I have left in my

battery?

Sure can.

I have come up with many ways to convey this information digitally, but all proved

to be too distracting while I ride.

On my latest iteration, I decided to try an analog approach, just like the gas gauge

on my car.

Theory

I can dim an LED2 by driving it with a Pulse Width Modulated (PWM) signal. This

signal only has two values, 5 volts and 0 volts, but it can change over time.

If this signal is always at 5 volts, the LED is at full brightness. If it spends half of

its time at 5 volts and the other half at 0 volts, we see half brightness. Yup, the

LED is dark when the PWM signal stays at 0 volts. The signal repeats after time T.

2 LEDs work best when either full on or off. Trying to dim them by varying the voltage is both complicated and

unstable. Dimming them with a PWM signal is the simplest and most predictable approach.

https://rick.sparber.org/eBikeGauge.pdf
https://rick.sparber.org/eBikeGauge.pdf

R. G. Sparber October 7, 2021 Page 3 of 9

By varying the point where I change voltages, I get any brightness I want. This is

because our eyes average the light.

The LED will flicker if it takes too long to repeat the pattern. If this repetition rate

is fast enough, the exact value of T doesn’t matter. Only the ratio of time spent at 5

volts versus 0 volts is visible on the LED. This ratio is called the duty cycle.

The problem with using a single LED to convey a value is that I have no visual

reference. How do I know I’m at half-bright? My answer is to add a second LED

driven by the complement of the PWM signal.

PWM1 drives LED1 and

PWM2 drives LED2.

Rather than talk about repetition rate, I

will focus on “timeslots.” I start with

timeslot 1 and count up to some number, call it N. Then the signal repeats, so the

next timeslot is 1.

When PWM1 is at 5 volts for timeslots 1 through N, LED1 is at full brightness,

and LED2 is dark. When PWM1 is at 0 volts for timeslots 1 through N, LED1 is

dark, and LED2 is at full brightness. Not very exciting, but it gets better.

R. G. Sparber October 7, 2021 Page 4 of 9

When PWM1 is at 5 volts for

timeslots 1 through
𝑁

2
 and then

at 0 volts for the remainder of

the timeslots, LED1 is on half

of the time so is at half

brightness.

While LED1 is on, LED2, driven by PWM2, is off. Then, when LED1 turns off,

LED2 turns on. The result is that both LEDs are on half of the time. More

importantly, the LEDs are at equal brightness.

As I vary the time slot value where I switch the LEDs, I vary their relative

intensity. Given N time slots, I vary this intensity in N steps. For example, if N

equals 10, I can set the relative intensity in steps of 10% from 0 to 100%.

One way to think about this dancing of light is to see that the total brightness never

changes. Instead, it shifts from top to bottom as the PWM signals change. When

my eBike battery is fully charged, the top LED is on, and the bottom LED is off.

At half, both are on. When my battery is dead, the top LED is off, and the bottom

LED is on.

Now that you know what to expect, here is a video.

https://www.youtube.com/watch?v=XZJ54lyVNT4

R. G. Sparber October 7, 2021 Page 5 of 9

The Hardware
Many embedded systems-on-a-chip3 contain PWM hardware. If you dig into their

spec sheets, you will likely find that the PWM hardware can drive almost any

General Purpose Input Output (GPIO) pin. It can also drive a second pin with the

inverse of this signal. So, with no external circuitry, we can get PWM1 and

PWM2.

If this is an Arduino compatible device, the command

writeAnalog(pin,dutyCycle)

will connect the PWM hardware to GPIO “pin” and set the duty cycle by

specifying dutyCycle as a value between 0 and 255. However, configuring the

device to output PWM2 is not a standard command.

 In my application, the inverted signal could only come out

on a pin that was already dedicated to another function.

Additionally, my connections to the two LEDs were

installed and not easy to change.

Time for a software solution!

3 For example, the ATTiny85.

R. G. Sparber October 7, 2021 Page 6 of 9

The Software
First, let me review what is important and what is not important.

1. As long as the PWM repetition rate is fast enough, I won’t get flickering. The

exact rate is not important.

2. I will get the desired behavior as long as the repetition rate does not change

change “too fast.” More on this later.

3. I do not want to change the hardware.

Arduino code is structured into four sections:

At the top, I define my variables and constants.

Next comes the function setup(), which, as the name implies, is where I do

one-time actions needed to make the program run.

This is followed by loop(). After leaving setup(), loop() continuously

executes. How long it takes to complete loop() depends on the code it contains.

Call this the cycle time.

Functions used in setup() and loop() are defined in the last section.

For my PWM functionality, I define two variables that are each one byte so can

hold any value between 0 and 255

• PWMtimeslot give it the initial value of 0

• input which is set by the user

I also have a constant that is one byte: fullScale

No related code is placed in setup(), and there are no functions needed.

R. G. Sparber October 7, 2021 Page 7 of 9

In loop() I have4

if(PWMtimeslot >= fullScale)PWMtimeslot = 0

Each time loop() executes, this statement tests the current time slot value against

the full-scale value. If PWMtimeslot is greater than or equal to fullScale,

the time slot value PWMtimeslot is cleared back to zero. This lets me have any

number of time slots in a period up to a maximum of 255. I found that

fullScale = 50 gave the smoothest display.

Next, I increment the time slot number by 1 using

PWMtimeslot++;

The result is that PWMtimeslot counts from 1 to fullScale and then back

to 1 as I cycle through loop().

And, finally, I determine the PWM duty cycle

If(PWMtimeslot <= input){

digitalWrite(PWM1,1);

digitalWrite(PWM2,0);

}else{

digitalWrite(PWM1,0);

digitalWrite(PWM2,1);

}

where input must be equal to or less than the maximum number of timeslots,

fullScale.

This is saying that when PWMtimeslot is less than or equal to input, PWM1 is

set to 1 and PWM2 is set to 0. Otherwise, we do the opposite.

4 I know there are more compact ways to code this up, but I don’t think they would be as clear to a novice.

R. G. Sparber October 7, 2021 Page 8 of 9

Let’s try this logic out for input equal to 11 and fullScale equal to 50.

 Starting at PWMtimeslot equal to 1, we

test to see if timeslot is less than or

equal to our input, 11. It is, so we set

PWM1 to 1 while PWM2 is set to 0. We will

get this result until timeslot equal 12.

Then the test is false, so we set PWM1 to 0

and PWM2 to 1. We stay in this state until

timeslot reaches 51. Then this

count is set back to 0 and promptly

incremented to 1. Rinse and repeat.

If you looked at the two LEDs, the top one would be about ¼ as

bright as the bottom LED.

There are a few consequences of this design.

• The software increments the timeslot as fast as possible. Any logic that

defines the duration of a timeslot must run slower and will be more complex.

• I can duplicate this code as many times as needed until I run out of output

pins. Each PWM generator can have a different number of timeslots.

• Unlike the stock software-controlled PWM hardware, I can have both the

true and inverted outputs on any pins.

The one problem with this scheme is that if your application requires a constant

repetition rate, this software-based PWM generator will only work if the cycle time

of loop() is constant. As you change the number of lines of code being executed,

the cycle time changes.

In my application, a lot more code runs once every second, yet I don’t see any

difference in the LEDs.

R. G. Sparber October 7, 2021 Page 9 of 9

I welcome your comments and questions.

If you want me to contact you each time I publish an article, email me with

“Subscribe” in the subject line. In the body of the email, please tell me if you are

interested in metalworking, software plus electronics, kayaking, and/or the Lectric

XP eBike so I can put you on the right distribution list.

If you are on a list and have had enough, email me “Unsubscribe” in the subject

line. No hard feelings.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

mailto:Rgsparber.ha@gmail.com

