
R. G. Sparber July 5, 2020 Page 1 of 6

Bridging the Gap Between Realtime and
Data in an Arduino, Version 1.0

By R. G. Sparber

Protected by Creative Commons.1

I can use my oscilloscope to look at the signal

at a given General Purpose Input Output

(GPIO) pin. I trust this information as long as

its highest frequency does not exceed the

capability of the ‘scope.

I can also inject some test code into my program that reads that pin and outputs its

state:

Sample = digitalRead(LogicalInputPinByte));

Serial.print(Sample);

My trust level is not as high because the action of printing the state changes the

realtime behavior of the software.

How do I see what the unmodified software sees?

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

R. G. Sparber July 5, 2020 Page 2 of 6

My solution is to write a program that simulates my ‘scope. It triggers when the

state of the monitored pin changes state and then takes 255 samples at a user-

specified sampling rate. Then it stops recording and dumps the samples to the

screen—the cycle repeats.

Here is a typical output:

Recorder is armed. + means it triggered: +

Recorded data:

00

00

00

000

End of recorded data.

Lapsed time was 1 milliseconds.

The first line is telling me the program is ready to detect a change in input. When it

sees that change, it outputs a “+” and then gets to work reading the input bit and

storing it. When 255 samples have been collected, it stops recording and prints out

the array. It also records how long it took to record all of this data.

In the above case, I had the sampling rate set to 0. The Lapsed time varies between

1 and 2 milliseconds, which means each sample took between 4 and 8

microseconds. The data varies between all zeros and all ones.

R. G. Sparber July 5, 2020 Page 3 of 6

In this next run, I set the sampling rate at 1 millisecond.

Recorder is armed. + means it triggered: +

Recorded data:

0000000111111111100000001111111110000000111111111100000001111111

1100000001111111111000000111111111100000001111111111000000111111

1111000000011111111110000001111111111000000011111111110000001111

111111000000011111111110000001111111111000000011111111110000001

End of recorded data.

Lapsed time was 259 milliseconds.

The average sampling rate is
259 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠

255 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
= 1.02 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒

Notice the pattern 00000001111111111, which is (7 x 1.02 =) 7.1 milliseconds of

zeros followed by 10 .2 milliseconds of ones. The total period is 17.3

milliseconds, which means a frequency of 58 Hz. I’m sure this is 60 Hz, which

would be a period of 16.7 milliseconds. Clearly, there is AC noise coupling into

my input pin. I just had a clip lead connected to the pin that was stretched across

my desk.

By varying the sample rate, I can see fine detail and also get the bigger picture.

R. G. Sparber July 5, 2020 Page 4 of 6

The Program
To some, my programming style looks childish or maybe primitive. My goal is to

write programs primarily so others can quickly understand what I’m doing. A

distance second priority is that the computer can figure it out.

//Single channel Almost Realtime Recorder

/***

This tool lets you see near-realtime changes in an input pin and

have the results dumped to the serial channel.

Trigger occurs when the input pin changes state. Once triggered,

it reads the pin and saves the result in an array as fast as

possible. After NumberOfSamples, it will print readings to the

serial channel. It takes one sample every

SamplingIntervalMsByte milliseconds.

U S E R D E F I N E D P A R A M E T E R S

***/

byte LogicalInputPinByte = 1; //replace number with the logical

input pin you wish to monitor

byte SamplingIntervalMsByte = 1;//sampling rate in milliseconds.

You can specify 0 and it will as fast as it can.

/***/

unsigned long LapseTimeUlong = 0;

unsigned long EndTimeUlong = 0;

unsigned long StartTimeUlong = 0;

#define NumberOfSamples 255 //255 is the maximum number of

samples (found emperically on Pro Micro)

byte RecordedDataArrayByte[NumberOfSamples];

byte LastReadingByte = 0;

byte SampleNumberByte = 0;

void setup(){

 pinMode(LogicalInputPinByte, INPUT);//set up input pin

 Serial.begin(9600);//set up path to terminal

 delay(1000);

}

void loop(){

 Serial.print(F("Recorder is armed. + means it triggered:

"));

 Trigger();

 ReadDataIn();

 DataOut();

}

R. G. Sparber July 5, 2020 Page 5 of 6

void Trigger(){
 LastReadingByte = digitalRead(LogicalInputPinByte);//read

the input as a baseline and save to detect change

 while(digitalRead(LogicalInputPinByte) ==

LastReadingByte);//add in delay(1) to prevent the watchdog timer

from firing on the ESP8266.

 //when the input changes state, return so data can be read

in

 Serial.println(F("+"));

}

void ReadDataIn(){

 StartTimeUlong = millis();

 if(SamplingIntervalMsByte == 0){

 for (SampleNumberByte = 0; SampleNumberByte <

NumberOfSamples;SampleNumberByte++){

 RecordedDataArrayByte[SampleNumberByte] =

digitalRead(LogicalInputPinByte);

 }

 }else{

 for (SampleNumberByte = 0; SampleNumberByte <

NumberOfSamples;SampleNumberByte++){

 RecordedDataArrayByte[SampleNumberByte] =

digitalRead(LogicalInputPinByte);

 delay(SamplingIntervalMsByte);

 }

 }

 EndTimeUlong = millis();

}

void DataOut(){

 Serial.println();

 Serial.println(F("Recorded data:"));

 //delay(5000);

 for (SampleNumberByte = 0; SampleNumberByte <

NumberOfSamples;SampleNumberByte++){

 byte Sample = RecordedDataArrayByte[SampleNumberByte];

 Serial.print(Sample);

 if((SampleNumberByte+1)%64 == 0)Serial.println();

 }

 Serial.println();

 Serial.println(F("End of recorded data."));

 Serial.println();

 LapseTimeUlong = EndTimeUlong - StartTimeUlong;

 Serial.print(F("Lapsed time was "));

R. G. Sparber July 5, 2020 Page 6 of 6

 Serial.print(LapseTimeUlong);

 Serial.print(F(" milliseconds."));

 Serial.println();

 delay(1000);

}

I welcome your comments and questions.

If you wish to be contacted each time I publish an article, email me with

“Subscribe” in the subject line. In the body of the email, please tell me if you are

interested in metalworking, software, or electronics so I can put you on the best

distribution list.

If you are on a list and have had enough, email me “Unsubscribe” in the subject

line.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

mailto:Rgsparber.ha@gmail.com

