
R. G. Sparber July 24, 2017 Page 1 of 6

A Diagnostic Tool for Arduino Software,

version 1.1

By R. G. Sparber

Protected by Creative Commons.
1

While developing software for the Arduino
2
 it is inevitable that bugs will be

introduced. In order to isolate and understand each of these bugs, it is essential to

see what is going on.

A well equipped software development environment permits the user to be notified

of program status as the code executes. The output is commonly displayed on a

computer screen. But what if your environment is not so great or the system has

already been deployed and no computer is attached?

A very old yet still useful technique is to seed the code with a diagnostic

subroutine. It will report on status when turned on and be invisible when turned

off. Reporting is done with whatever human/machine interfaces exist. In my case, I

have a Liquid Crystal Display (LCD) and a pushbutton.

At any time, I can turn on all copies of my diagnostic subroutine by holding down

the pushbutton and power cycling. Turning them all off requires power cycling

without holding down the button. No special tools needed.

1
 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.
2
 For an overview of this hardware and software, see https://en.wikipedia.org/wiki/Arduino

R. G. Sparber July 24, 2017 Page 2 of 6

The diagnostic subroutine prints a small amount of information to the LCD.

Here is an example of how I use the tool.

 Say I wanted to know when I entere a given subroutine. I add this to the top of that

subroutine

Diag(314,0,Pause);

When this tool is reached during normal program execution, it would first look at

the DiagOn flag. If set to true, it would display on the LCD:

ID 314

Data 0

Since the control flag is "Pause", it will delay 10 seconds and then return control to

the program.

What if I wanted time to check other parts of the system? I can use

Diag(314,0,Wait);

With the control flag set to "Wait", the tool first prints to the LCD. Then it starts

watching the Pest pushbutton. When it see it had been pushed, the tool clears the

display and waits for the button to be released. Then it returns control to the main

line code.

 I wanted to be sure the button was released before returning control in case the

main line code was waiting for this button to be pushed.

R. G. Sparber July 24, 2017 Page 3 of 6

My data does not have to be a fixed number, I can have this

MyShoeSize = 8;

 …

Diag(7, MyShoeSize,Wait);

which will display

ID 7

Data 8

This information would stay on the display until I pushed the Pest button. Program

execution would resume when I released it.

R. G. Sparber July 24, 2017 Page 4 of 6

In the startup() section of the code I put:

//Enable Diag() if Pest button was held down at power up. Default is Diag() off

if (DebouncedRead(PABPin) == Pushed)

 {

 DiagOn = true;

 lcd.clear();

 lcd.print (" Diagnostics");

 lcd.setCursor(0,1); //print next line on second row

 lcd.print (" enabled.");

 }

WaitUntilPestButtonReleased:

if (DebouncedRead(PABPin) == Pushed) goto WaitUntilPestButtonReleased;

My pushbutton is called "Pest". I read it's state using a subroutine called

DebouncedRead(). The constant "Pushed" equals the value returned by my read

subroutine when the button is pushed (no surprise there…).

If Pest is held down while this code executes, I turn on a flag called DiagOn,

display an acknowledgement message on the LCD, and wait until the button is

released.

I hope you notice that I choose names that help me remember what is going on.

This costs me no Arduino memory since the compiler strips all of this text off.

At the top of the code I define "Wait", "Pause", and the DiagOn flag:

const int Pause = 1; //used by Diag()

const int Wait = 2; //used by Diag()

boolean DiagOn = false;

The user might accidently specify a control value other than Wait or Pause so I do

defend against this in the tool.

R. G. Sparber July 24, 2017 Page 5 of 6

My diagnostic tool is called Diag() and is defined at the bottom of my file. It first

reads the DiagOn flag and just returns if set to false. If true, the tool displays a user

defined marker, a user defined bit of data, under user defined control. This control

can be a 10 second pause or a wait until the Pest button is pushed and released.

Since each instance of this tool can be customized, I can use as many as desired

with no chance of confusion.

Here is the diagnostic tool code.

When called, I pass the subroutine an integer that can uniquely define this instance

of the tool: "marker". I also pass it whatever integer data is needed: "data". And

finally, I pass it an integer that tells the tool to either wait 10 seconds or to respond

to the pushing of the Pest button: "control". If the user does not pass a valid control

value, the tool notifies them.

void Diag(int marker, int data, int control) //diagnostic tool; control can be Pause

or Wait. Pause is for 10 seconds. Wait is until Pest pushed and released

{

if (DiagOn == false) return; //default is all instances of this diagnostic tool off.

Turn them on by holding down only the Pest button at power up.

/*

Inputs:

marker - identify of this instance of Diag()

data - an integer to be displayed

control - what to do when data is displayed

 * Pause - delay 10 seconds and then return

 * Wait - wait until the Pest button is pushed and released. Then return.

*/

lcd.clear();

lcd.print ("ID ");

lcd.print(marker);

lcd.setCursor(0,1); //print next line on second row

lcd.print ("Data ");

lcd.print (data);

if (control == Pause)

 {

 delay(10000); //wait 10 seconds

R. G. Sparber July 24, 2017 Page 6 of 6

 lcd.clear(); //clean up display

 return;

 }

if (control == Wait)

 {

 ScanPestButton:

 if(DebouncedRead(CABPin) == Pushed)

 {

 //clean up display; next wait for Pest to be pushed and then wait for it to be

released

 lcd.clear(); //when Pest is pushed, clear the display

 if (DebouncedRead(CABPin) != Pushed)return; //when Pest is then

released, return

 }

 goto ScanPestButton; //keep scanning for Pest to be pushed and released

 }

//control is not Pause or Wait so tell user they didn't specify a valid Control type,

wait 10 seconds, clean up, and return

lcd.clear();

lcd.print ("ID ");

lcd.print(marker);

lcd.setCursor(0,1); //print next line on second row

lcd.print ("Control?");

delay(10000); //wait 10 seconds

lcd.clear();

return;

} //end of Diag()

I welcome your comments and questions.

If you wish to be contacted each time I publish an article, email me with just

"Article Alias" in the subject line.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

