
R. G. Sparber March 29, 2020 Page 1 of 4

A Technique for Sharing Realtime in the
Arduino Software Environment,
Version 1.1

By R. G. Sparber

Protected by Creative Commons.1

Disclaimer: I am mostly a self-taught programmer who has been around

professional programmers for decades. I’m sure the pros have a far better way to

do this. Their constructive criticism is welcome and will improve this article. One

caveat – all solutions must be easy to understand. Concepts like pointers lose a lot

of novice programmers. Sure, this could be done with interrupts but that can make

debugging difficult.

The Problem
 Arduino subroutines can either be called from setup() or loop().

Subroutines within Setup() execute once so realtime typically doesn’t

matter. Subroutines within loop() execute on each cycle. If one

subroutine within loop() decides to wait for a while, loop() freezes

until this time is over. If other code in loop() must deal with external

stimuli, events can be missed.

The Solution
Rather than just waiting, give control back until the desired delay time has passed.

This can be accomplished by having a separate subroutine which contains a timer

that is checked on each loop() cycle.

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

R. G. Sparber March 29, 2020 Page 2 of 4

Details
Timers
I define a subroutine, Time(), that executes at the start of loop(). It contains all

realtime timers which are used by subroutines.

Each timer has 3 states:

For example, I will define RTC_TimerStateByte which will contain the current

timer state. The states are:

RTC_TimerStartByte which equals 1

RTC_TimerRunningByte which equals 2

RTC_TimerDoneByte which equals 3.

When RTC_TimerStateByte is one of these states, the timer subroutine will return

RTC_TimerNoErrorByte which equals 0. Otherwise, it will return the illegal value.

The RTC Timer subroutine is state-driven. If the state equals Timer Start, it

sets the start time equal to the current time so it can later calculate the lapse time. It

then advances the state from Timer Start to Timer Running and returns

with no error.

byte RTC_Timer(){

 if RTC_TimerStateByte equals RTC_TimerStartByte{

 set the start time to the current time

 set RTC_TimerStateByte to RTC_TimerRunningByte

 return RTC_TimerNoErrorByte

 }

 if RTC_TimerStateByte equals RTC_TimerRunningByte{

 if the current time – the start time is < the duration{

return RTC_TimerNoErrorByte

}else{

set RTC_TimerStateByte to RTC_TimerDoneByte

return RTC_TimerNoErrorByte

 }

 Return RTC_TimerStateByte

}

R. G. Sparber March 29, 2020 Page 3 of 4

The next time the timer is called, it sees that the state is not Timer Start so

skips to the second test. There it finds that the state does equal Timer Running

so it sees if the elapsed time is less than the defined duration. If more time is

needed, it returns with no error. If enough time has elapsed, it moves to the Timer

Done state and returns no error. If the timer state is none of the above, it returns

with the illegal state value. Note that RTC_Timer is called from Time() which

must deal with this returned error code.

Calling Subroutines
If realtime delays are not a problem, I can write a subroutine like this:

Each time I call RealTimeHog()it will

execute code block A, stop all

execution of code for 2 seconds, and then

execute code block B.

But what if I had another subroutine called Scan() that had to read an input pin

every 100 milliseconds? Scan() would be disabled each time RealTimeHog()

ran.

void RealTimeHog(){

code block A

delay for 2 seconds

code block B

}

byte RTC_Timer(){

 if RTC_TimerStateByte equals RTC_TimerStartByte{

 set the start time to the current time

 set RTC_TimerStateByte to RTC_TimerRunningByte

 return RTC_TimerNoErrorByte

 }

 if RTC_TimerStateByte equals RTC_TimerRunningByte{

 if the current time – the start time is < the duration{

return RTC_TimerNoErrorByte

}else{

set RTC_TimerStateByte to RTC_TimerDoneByte

return RTC_TimerNoErrorByte

 }

 Return RTC_TimerStateByte

}

R. G. Sparber March 29, 2020 Page 4 of 4

This conflict can be resolved by defining a new subroutine that is realtime

considerate:

This subroutine depends on the RTC timer to know what to do next.

When RealTimeConsiderate()first runs, the timer is idle so is in the Timer Done

state. This means it should execute code block A. When finished, it changes the RTC

timer’s state to Timer Start. We then return from RealTimeConsiderate().

Each time RealTimeConsiderate()runs, it tests the timer state to see if it is still

running. If so, we just return. If the timer is done, it executes code block B and then

returns having completed its tasks.

I welcome your comments and questions.

If you wish to be contacted each time I publish an article, email me with "Subscribe" in the

subject line. In the body of the email please tell me if you are interested in metalworking,

software, and/or electronics so I can put you on the best distribution list.

If you are on a list and have had enough, email me "Unsubscribe" in the subject line.

Rick Sparber

Rgsparber.ha@gmail.com

Rick.Sparber.org

void RealTimeConsiderate(){

if RTC_TimerStateByte equals RTC_TimerDoneByte {

 code block A

 set RTC_TimerStateByte to RTC_TimerStartByte

return

}

if RTC_TimerStateByte equals RTC_TimerRunningByte, return

if RTC_TimerStateByte equals RTC_TimerDoneByte{

code block B

return

}

}

mailto:Rgsparber.ha@gmail.com

