
R. G. Sparber October 30, 2021 Page 1 of 4 

An Arduino Debugging Tool, Version 1.0 

By R. G. Sparber 
 

Protected by Creative Commons.1 

 

This tool depends on having KeyText, which I use many times each day. 

 

When I debug my Arduino code on a device with a USB, I can print to a monitor. 

Here is a typical output: 

 
loop(): 76.    Time Stamp  5652 ms 

InputArray[1] = 99 

 

Most of this text is generated by the macro and compiler. It says that this output 

was in the function loop() at line 76. It has been 5652 milliseconds since 

power-up. The variable, InputArray[1], equals 99. 

 

To plant this test code into a place in my program, I call on KeyText. 

 

When I hold down Shift and Control and then press “-“, I 
get my first prompt which asks for the name of a control 

variable. When this variable has been defined, the 

remaining code compiles. Otherwise, my test code does 

not compile, so it does not take up any program space nor 

use any real-time. Say I enter print1. 

 

  

 Then I am prompted for the variable I wish to print. I’ll 
enter myHatSize. 

 

 

 

 

 

 
1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this 

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, 

Mountain View, CA 94042, USA. 

https://www.mjmsoft.com/


R. G. Sparber October 30, 2021 Page 2 of 4 

 

The macro then injects 

 
#ifdef print1 

Serial.print(__FUNCTION__); 

Serial.print(F(“(): “));   

Serial.print(__LINE__); 

Serial.print(F(“.    Time Stamp  “));  

Serial.print (millis() – StartForTimeStampULong); 

Serial.println(F(“ ms”)); 

Serial.print(F(“myHatSize = “)); 

Serial.println(myHatSize); 

#endif 

 

#ifdef print1 and #endif mark the boundaries of the diagnostic code. 

Only if I have #define print1 someplace in my code, will these lines 

compile. I have as many of these #define statements as needed to gain full 

control over which print blocks I want active at a given time. For example, one of 

my programs has this at the top of the file: 

 
//#define DiagPrint1 

//#define DiagPrint2  

//#define DiagPrint3  

//#define DiagPrint4  

#define DiagPrint5  

//#define DiagPrint6  

//#define DiagPrint7  

//#define DiagPrint8  

//#define DiagPrint9  

 

 

I have 9 different groups of print blocks, but only DiagPrint5 is active.  

  



R. G. Sparber October 30, 2021 Page 3 of 4 

#ifdef print1 

Serial.print(__FUNCTION__); 

Serial.print(F(“(): “));   

Serial.print(__LINE__); 

Serial.print(F(“.    Time Stamp  “));  

Serial.print (millis() – StartForTimeStampULong); 

Serial.println(F(“ ms”)); 

Serial.print(F(“myHatSize = “)); 

Serial.println(myHatSize); 

#endif 

 

__FUNCTION__ and __LINE__ talk to the compiler, so I get the function’s 

name and line number.  

 

I then print out my timestamp, which is particularly handy when a problem occurs 

randomly or after a given time. It is also helpful when I am running more than one 

processor simultaneously, and they trade messages.  

 

Near the top of my file, I have 

 
unsigned long StartForTimeStampULong; 

 

In setup(), I have 
 

 StartForTimeStampULong = millis(); 

 

which sets it to the current time.  Each time I do a diagnostic print, my timestamp 

shows the time since setup()ran. 

 

The last section prints out the selected variable. 

 

  



R. G. Sparber October 30, 2021 Page 4 of 4 

This KeyText macro generates this code does all of the work: 

 
{Speed 8}#ifdef {Ask ^"ifdef string" "Enter the ifdef string"} 
Serial.print(__FUNCTION__); 
Serial.print(F("(): "));   
Serial.print(__LINE__); 
Serial.print(F(".    Time Stamp  "));  
Serial.print (millis() - StartForTimeStampULong); 
Serial.println(F(" ms")); 
Serial.print(F("{Ask ^"variables name" "Enter the variable you wish to print"} = ")); 
Serial.println({variables name}); 
#endif 
 

{Speed 8} slows down the printing into the file, so I don’t miss any characters. 
 

The macro prints #ifdef and then asks for the associated name. After a few more 

lines of code, the macro prompts for the name of the variable I want to print out. A 

useful feature of KeyText is the ability to prompt for a variable and then use it in 

more than one place. I print out the variable’s name as text and then print out the 

contents of this variable.  

 

 

 

 

 

I welcome your comments and questions.  
 

If you want me to contact you each time I publish an article, email me with 

“Subscribe” in the subject line. In the body of the email, please tell me if you are 

interested in metalworking, software plus electronics, kayaking, and/or the Lectric 

XP eBike so I can put you on the right distribution list.  

 

If you are on a list and have had enough, email me “Unsubscribe” in the subject 

line. No hard feelings. 

 

Rick Sparber 

Rgsparber.ha@gmail.com 

Rick.Sparber.org 
 

mailto:Rgsparber.ha@gmail.com

