
R. G. Sparber April 21, 2024 Page 1 of 37

An Unofficial SoftWire User’s Guide,
Version 1.0.0

By R. G. Sparber

Protected by Creative Commons.1

Purpose
Provide an understanding of SoftWire that will enable you to go from a device’s

spec sheet to a set of SoftWire function calls. This journey takes you from timing

diagrams through voltage waveshapes and into software. Then I take a sample spec

sheet and turn it into a driver.

This document is a work in progress. I welcome your comments and suggested

corrections.

Overview
SoftWire provides the functions to

• place information into a transmit buffer,

• process the transmit buffer as it sends this information to a designated slave,

• request information from a slave,

• collect that information and put it into a receive buffer,

• and read information from this receive buffer

Ways to Use This Document
If you wish to have the same understanding of SoftWire as I do, read this

document sequentially. If you just want to create I2C device drivers, read the

Creating a Driver section. If anything is confusing, refer to the corresponding

section. If that doesn’t help, contact me at rgsparber@AOL.com.

1 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

https://github.com/stevemarple/SoftWire
mailto:rgsparber@AOL.com

R. G. Sparber April 21, 2024 Page 2 of 37

Creating a Driver
These steps should guide you in creating a driver for your selected device. Reading

the example on page 33 may help you see how this works.

1. Find the spec sheet for the I2C device you wish to drive.

2. Identify if it expects 5 volt or 3.3 volt logic levels. Only connect it to an I2C

bus with devices from the same voltage family. Furthermore, be sure that the

total pull-up resistance is around 4.7K. Some breakout boards include

optional pull-up resistors; you do not want more than one pair active on a

bus.

3. Study the spec sheet carefully to find

a. The device’s 7 bit address. This is sometimes called its base address.

b. What commands must you send the device, and how many bytes are

returned? For example, a command to read temperature may return

two bytes.

c. I assume your spec sheet contains one or more sequence diagrams

showing what must pass between master and slave to accomplish the

stated task. If it is in text, draw your sequence diagrams.

4. For each sequence diagram

a. Match the sequence of a SoftWire command to a segment of your

sequence diagram. Pay close attention to the TransmissionInProgress

flag state.

b. Form a list of these commands.

c. Place these commands into your code with tests, as needed, to prevent

a faulty sensor from stopping execution.

R. G. Sparber April 21, 2024 Page 3 of 37

Background
I have never liked using libraries that I don’t understand. Recently, I needed to

interface with an I2C device using SoftWire. Finding a library that included my

device wasn’t difficult, but it was designed for the built-in hardware I2C bus. I

looked at the code, but it used many programming techniques that were foreign to

me. I wanted to find a more straightforward and understandable way. I tried to use

the functions defined for SoftWire.

The Reference section of Arduino provides a list of SoftWire functions, but I could

not find anything like a User’s Guide, so here is my attempt. It is based on

studying the SoftWire.cpp and SoftWire.h files, plus applying this understanding to

a driver for an I2C temperature sensor. All software was developed on a Sparkfun

Pro Micro using the Arduino Integrated Development Environment. I used

Notepad++ for code editing.

If you are unfamiliar with I2C, I suggest you read this excellent document.

If you go to SoftWire, you will find a lot of software development-focused

documentation. Maybe I missed it, but I couldn’t find anything telling me how to

use these functions to control an I2C device. Thankfully, SoftWire.h and

SoftWire.cpp were clear enough for me to follow, given my level of software

sophistication. The acid test was when I successfully applied this newfound

understanding to writing a driver for the Si17021 Humidity and Temperature

sensor that would read back temperature.

https://www.nxp.com/docs/en/user-guide/UM10204.pdf
UM10204
https://github.com/stevemarple/SoftWire

R. G. Sparber April 21, 2024 Page 4 of 37

Contents
Purpose ... 1

Overview .. 1

Ways to Use This Document ... 1

Creating a Driver .. 2

Background .. 3

The Physical Layer ... 5

Ones, Zeros, and More ... 8

SoftWire ...14

The SoftWire Functions ...15

Key Low-Level Elements ..16

begin() ..16

beginTransmission() ...16

write() ..16

endTransmission() ...17

requestFrom() ..19

read() ..23

available() ...23

Example: The Si7021 Humidity and Temperature Sensor25

Sample Code: Si7021 Device ..31

Before setup(): ..31

In setup() ..32

The I2C Driver ...33

Oscilloscope Pictures .. Error! Bookmark not defined.

Acknowledgments ..37

R. G. Sparber April 21, 2024 Page 5 of 37

The Physical Layer

The I2C bus consists of a Serial Clock lead (SCL) and a Serial Data lead (SDA). If

any boxes pull down on a lead, a logic 0 results. If no boxes are pulling down, you

get a logic 1.

At any given time, there can only be one “master.” During a communication

session, the master sources clock to all “slaves” as shown by the arrows going from

the master to all the slaves. The master can dialog with any slave by calling the

unique address built into each slave. When called upon, any slave can use the clock

to place data on the SDA line.

From a software standpoint, a maximum of 127 slaves can exist on one I2C bus.

Due to electrical2 and failure mode constraints3, this number is typically fewer than

10.

2 The longer the wires carrying clock and data, the more capacitance exists from each conductor to ground. This

capacitance and its related pull-up resistor form an RC circuit. If you try to run the clock too fast, the resistor cannot

charge up the capacitance fast enough to reach a logic 1. See Appendix I, page 34 for details.
3 You can image the difficulty of find which of 127 devices was pulling down on the clock or data lead because it

was faulted.

R. G. Sparber April 21, 2024 Page 6 of 37

From an electrical standpoint, when the master or a slave wants to send a logic 0, it

pulls that lead to ground. When the master and all slaves are not pulling to ground,

the lead can rise up to a logic 1 thanks to the pull-up resistors R1 and R2, which

connect to a voltage source, VCC.

You may find that some I2C breakout boards have pull-up resistors with the option

of disconnecting them. You do not want more than one set of pull-up resistors on a

given I2C bus.

Notice that the pull-up resistors connect to VCC, usually the symbol for the

device’s power supply. In most cases, the voltage used to set logic 1 via the pull-

ups is the same as the device’s power supply voltage. For example, you can have a

5 volt powered device, and it expects to see a logic 1 equal to 5 volts. Consult the

spec sheet for your device to be sure.

All I2C devices recognize ground as a logic 0 regardless of the supply voltage.

R. G. Sparber April 21, 2024 Page 7 of 37

What do you do if some devices need 5 volt logic and the rest need 3.3 volt logic?

You will need two I2C buses.

What do you do if you have two slaves with the same address? You will need two

I2C buses to prevent them from responding simultaneously.

Most Arduino-compatible computers have only one hardware-based I2C bus, so

you may be looking into SoftWire for extra I2C busses. It permits you to have

many I2C buses. For every two GPIO pins, you get one I2C bus. You can only

have one of these buses active at a time, but that is a small price to pay.

R. G. Sparber April 21, 2024 Page 8 of 37

Ones, Zeros, and More

Serial Clock and Serial Data can each have only two values

in the world of digital hardware: logic 0 or logic 1.

We use SDA’s and SCL’s logic 0 and 1 states to convey bits. A 1 is present when

SDA is at logic 1, and SCL goes through the sequence logic 0 – logic 1 – logic 0.

This sequence on SCL is called a clock pulse.

R. G. Sparber April 21, 2024 Page 9 of 37

If SDA was at logic 0 during a clock pulse, a 0 is present.

The digital value only exists when the clock is at logic 1. During this time, SDA

must be steady. SDA changes when SCL is at logic 0.

R. G. Sparber April 21, 2024 Page 10 of 37

To transmit 01, we would see

SDA is at logic 0 for the first clock pulse and logic 1 for the second. If you

understand the rules so far, you know that SDA will not change while SCL is high.

To signal the start of a series of bits, we use a “START condition.”

When SDA changes from logic 1 to logic 0 while SCL is high, we get a START

condition. In the standards, START is marked with an “S.” If subsequent START

conditions occur, they can be marked with “Sr” or simply “S.”

https://www.nxp.com/docs/en/user-guide/UM10204.pdf

R. G. Sparber April 21, 2024 Page 11 of 37

SDA

SCL

First4, we have the START condition. Followed by 10.

4 The picture was taken with an iPhone of a Tektronix 2430A osilloscope.

1 0

R. G. Sparber April 21, 2024 Page 12 of 37

Similarly, we need a way to signal the end of a series of bits, a STOP condition.

When SDA changes from a logic 0 to a logic 1 while SCL is at logic 1, we have a

STOP condition.

In the standards, STOP is designated with a “P.”

There is one more piece to this puzzle. After eight bits, the receiver takes control of

the SDA lead for an acknowledgment (ACK) that it received the previous byte.

During clock pulse 8, SDA can be a logic 0 or 1. Then, whoever sent those bits

changes from driving the SDA line to listening to it. The end that received the byte

changes to driving the SDA line (in red) and sets it to logic 0 to indicate ACK. If

the receiver doesn’t successfully receive the byte, it is clueless, so it remains in the

listening mode, causing the pull-up resistors to put a logic 1 on SDA. This is called

No-ACK or NACK.

R. G. Sparber April 21, 2024 Page 13 of 37

Time to put this all together.

Before bits start to fly, SDA and SCL are sitting at logic 1 because neither the

master nor any slaves pull it down to logic 0. Then, the master pulls SDA to logic 0

while leaving SCL high to give us a START condition. Then, the most significant

bit arrives. In our example, SDA is at logic 0, so the first bit is a 0. During clock

pulse 2, SDA is at logic 1, so a 1 exists. SDA remained at logic 1 during clock

pulse 3, so we get another 1. During clock pulse 4, SDA has transitioned to a logic

0 so we get a 0. Clock pulse 5 witnesses a logic 1, so we get a 1. Skipping clock

pulses 6 and 7 because I think you get it by now, we arrive at clock pulse 8, our

least significant bit. SDA is at logic 0, so our last bit is a 0. The master then

changes from driving SDA to listening to it, while the slave changes from listening

to SDA to driving it and puts out a logic 0. This is the ACK, which remains low

until clock pulse 9 is gone.

We would then either receive another byte of data followed by another ACK or, if

done, receive a STOP condition as shown on the previous page.

To recap, we have the following pieces that will be used to build I2C messages

• START

• Data: 0 or 1

• ACK or NACK after each byte of data

• STOP

In a spec sheet you may see

START, DATA, and ACK

represented like this:

You will see these concepts again as we talk about SoftWire.

R. G. Sparber April 21, 2024 Page 14 of 37

SoftWire
The SoftWire library consists of SoftWire.h and SoftWire.cpp. This code performs

what is commonly called “bit banging.” While Wire accomplishes I2C by having

hardware change the state of SDA and SCL, in SoftWire, it is all in the code.

To generate a clock cycle we

stat start with SCL at logic 0,

they write a 1 to the SCL port,

wait
𝑇

2
 microseconds, write a 0,

and
𝑇

2
 again. The clock “period”

is then T microseconds.

If every clock cycle passed one bit of data, the baud rate would equal the reciprical

of the clock period. For example, if the clock was at logic 1 for 20 microseconds

and then low for 20 microseconds, the baud rate would be (
1

40 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠
) =

25,000 bits per second or
25,000 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

8 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑏𝑦𝑡𝑒
 = 3125 bytes per second.

But since each byte is accompanied by an acknowledgment, which takes one clock

cycle, the baud rate is reduced to
25,000 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝟗 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑏𝑦𝑡𝑒
 = 2778 bytes per second.

I will introduce you to the commands and then detail each one. Then, I will show

you how they fit together to satisfy the interface of a specific I2C device.

https://www.arduino.cc/reference/en/language/functions/communication/wire/

R. G. Sparber April 21, 2024 Page 15 of 37

The SoftWire Functions

begin()

beginTransmission()

write()

endTransmission() This is a big one.

requestFrom()

read()

available()

stop()

Currently, I’m not addressing the clock stretching feature.

At the bottom of each description is a list of return values.

R. G. Sparber April 21, 2024 Page 16 of 37

Key Low-Level Elements

TransmissionInProgress is a flag that tells various commands how to behave.

The Transmit Buffer is an array that holds bytes to be sent to the designated slave.

The Receive Buffer is an array that holds bytes read from the designated slave.

Functional Descriptions of Each Function

begin()

begin(void) sends a STOP condition plus sets the TransmissionInProgress flag to

false. It returns a value of 0. It is typically only in setup() and called once per bus.

For example, if I want two SoftWire busses:

sw0.begin();

sw1.begin();

Return value: It does not return anything.

beginTransmission()

beginTransmission(<slave’s address>) prepares for a new transmission by clearing

the transmit buffer. This address is 7 bits. It saves the slave address for other

functions to use. It does not modify the TransmissionInProgress flag.

Return value: It does not return anything.

write()

We have two flavors:

• write(<byte>) puts the byte into the transmit buffer.

• write(<an array’s name>, <number of bytes>) reads the array and puts the

specified number of bytes into the transmit buffer. For example, say we have

the array Qaz[33] and want to put the first two elements into the transmit

buffer. Then we would enter write(Qaz, 2). It does not modify the

TransmissionInProgress flag.

Return value: If the transmit buffer is full, it returns 0. If data was written, it

returns a 1.

R. G. Sparber April 21, 2024 Page 17 of 37

endTransmission()

We have a few possible behaviors:

• endTransmission(true) first looks at the TransmissionInProgress flag.

o If the TransmissionInProgress flag is true, it puts out

▪ START,

▪ the slave’s 7 bit address is concatenated with a 1. This “1”

signifies a read.

▪ It then looks for an ACK from the slave. At this level of detail,

assume the ACK was received.

▪ It then sends STOP.

In graphical form:

o If the TransmissionInProgress flag is false, it puts out

▪ START,

▪ the slave’s 7 bit address is concatenated with a 0. This “0”

signifies a write.

▪ It then looks for an ACK. At this level of detail, assume the

ACK was received.

▪ Then it puts all bytes stored in the transmit buffer on the bus

looking for ACK between each byte.

▪ It then sends STOP.

In graphical form:

R. G. Sparber April 21, 2024 Page 18 of 37

• endTransmission(false)

o If the TransmissionInProgress flag is true, it puts out

▪ START,

▪ the slave’s 7 bit address is concatenated with a 1. This “1”

signifies a read.

▪ It then looks for an ACK. At this level of detail, assume the

ACK was received.

In graphical form:

Notice that no Stop exists on the end.

o If the TransmissionInProgress flag is false, it puts out

▪ START,

▪ the slave’s 7 bit address concatenated with a 0. This “0”

signifies a write.

▪ It then looks for an ACK. At this level of detail, assume the

ACK was received.

▪ Then it puts all bytes stored in the transmit buffer on the bus,

looking for ACK between each byte.

▪ It then sets the TransmissionInProgress flag to true.

In graphical form:

Notice that no Stop exists on the end.

Return value: If it doesn’t receive anything from the slave during the ACK clock

cycle, it returns a NACK which is 2. Timeout is related to clock stretching and

isn’t covered in this document.

R. G. Sparber April 21, 2024 Page 19 of 37

requestFrom()

requestFrom() has a few possible behaviors:

• requestFrom(<slave’s address>, <quantity>, false5) has two possible

behaviors:

o If the TransmissionInProgress flag is true,

▪ It clears the receive buffer

▪ The 7 bit <slave’s address> is concatinated with a “1”, which

means read, to become “Addr+1”

▪ It puts out onto the bus

• START

• Addr+1

▪ look for an ACK. At this level of detail, assume the ACK was

received.

▪ For each byte specified by <quantity>

• Read back from the bus a bytes

• send an ACK to the slave

• put received byte into the receive buffer.

▪ requestFrom() returns the number of bytes read

In graphical form:

5 This is the sendStop flag, so making it false means we do not want to send a STOP condition.

R. G. Sparber April 21, 2024 Page 20 of 37

requestFrom(<slave’s address>, <quantity>, false) continued

o If the TransmissionInProgress flag is false,

▪ It clears the receive buffer

▪ The 7 bit <slave’s address> is concatinated with a “1”, which

means read, to become “Addr+1”

▪ It puts out onto the bus

• START

• Addr+1

▪ look for an ACK. At this level of detail, assume the ACK was

received.

▪ For each byte specified by <quantity>

• Read back from the bus a bytes

• send an ACK to the slave

• put received byte into the receive buffer.

▪ It then sets the TransmissionInProgress flag to true.

▪ requestFrom() returns the number of bytes read

In graphical form:

R. G. Sparber April 21, 2024 Page 21 of 37

• requestFrom(<slave’s address>, <quantity>, true6) has two possible

behaviors:

o If the TransmissionInProgress flag is true,

▪ It clears the receive buffer

▪ The 7 bit <slave’s address> is concatinated with a “1”, which

means read, to become “Addr+1”

▪ It puts out onto the bus

• START

• Addr+1

▪ look for an ACK. At this level of detail, assume the ACK was

received.

▪ For each byte specified by <quantity>

• Read back from the bus a bytes

• send an ACK to the slave

• put the received byte into the receive buffer.

▪ Put STOP onto the bus

▪ It then sets the TransmissionInProgress flag to false7.

▪ requestFrom() returns the number of bytes read

• In graphical form:

6 This is the sendStop flag, so making it true means we want to send a STOP condition.
7 Since we are sending a STOP condition, it means a transmission is not in progress so we set the

TransmissionInProgress flag to false. Other functions need to know this.

R. G. Sparber April 21, 2024 Page 22 of 37

requestFrom(<slave’s address>, <quantity>, true) continued

o If the TransmissionInProgress flag is false,

▪ It clears the receive buffer

▪ The 7 bit <slave’s address> is concatinated with a “1”, which

means read, to become “Addr+1”

▪ It puts out onto the bus

• START

• Addr+1

▪ look for an ACK. At this level of detail, assume the ACK was

received.

▪ For each byte specified by <quantity>

• Read back from the bus a bytes

• send an ACK to the slave

• put received byte into the receive buffer.

▪ Put STOP onto the bus

▪ It then sets the TransmissionInProgress flag to true.

▪ requestFrom() returns the number of bytes read

In graphical form:

Return value: the total number of bytes read

R. G. Sparber April 21, 2024 Page 23 of 37

read()

Return value: This function return one byte from the receive buffer and decrements

the buffer pointer. This is a first in, first out buffer. If no byte is present, it returns -

1.

Example:

Given you are expecting to get up to 16 bytes:

int qaz[16];

for(byte j = 0;j < 15; j++)

{

qaz[i] = read();

 if(qaz[i] < 0) break; //if nothing in buffer, stop

reading from it

}

available()

Return value: This function returns the number of bytes not yet read from the

receive buffer.

Example:

if(available() = 2) //I am expecting 2 bytes

{

 byte qaz = read();

 byte wsx = read();

}

Now, available() will return 0.

R. G. Sparber April 21, 2024 Page 24 of 37

stop(false)8

This function puts a STOP condtion on the bus and sets the

TransmissionInProgress flag to false.

Return value: 0 unless it is doing clock stretch and has a failure.

8 The function stop(true) involves clock stretching which I’m not addressing in this version of the document.

R. G. Sparber April 21, 2024 Page 25 of 37

Example: The Si7021 Humidity and Temperature
Sensor

I will periodically refer to this spec sheet from SILICON LABS.

Table 2 shows that it can take up to 10.8 milliseconds to do a 14-bit temperature

conversion. Table 3 shows the I2C interface specs, but we will not be nearly this

fast using SoftWire. Table 5 says the accuracy is within +/- 1 °C from -40 °C to

+115 °C. Between -10 °C and 85 °C is is +/- 0.4 °C maximum.

From Table 7, the storage temperature is from -65 °C to 150 °C, so it will survive

my application where it will see -55 °C even though the accuracy will suffer at this

temperature. It also specifies the supply voltage to be a maximum of 4.2V while

the voltage on any input pin is no more than the supply voltage plus 0.3V. We will

run at 3.3V, so no input pin should get above 3.6V. Note that 5 volts on the I2C

pull-up resistors violates the spec and can cause damage.

From section 5, we get the I2C Interface specs. The 7 bit slave address is 0x40. To

measure temperature without “Hold Master Mode,” we will use command code

0xF3. Hold Master Mode is tied to clock stretching, which I won’t be using.

Instead, I will wait the maximum time before asking for a reading.

From section 5.1, we get the

required details of a

transaction. They are using

terminology consistent with

the I2C standards.

https://cdn.sparkfun.com/assets/b/1/b/8/5/Si7021-A20.pdf

R. G. Sparber April 21, 2024 Page 26 of 37

The white boxes are what the master sends, and the gray boxes are what the sensor

sends.

First, we must send START, the slave address, 0x40, a write bit, wait for an ACK,

and then the measurement command, 0xF3, and receive another ACK. “W” means

a write bit, so it has the value of 0.

Looking through the graphical forms, I found

I only need to send one byte, the Measurement command, which is 0xF3. This

graphic corresponds to:

endTransmission(false)

TransmissionInProgress flag is false

R. G. Sparber April 21, 2024 Page 27 of 37

But before we can call endTransmission(false), we need to put the Measurement

command into the transmit buffer. The command write(<byte>) will do the trick.

So far, we have:

write (0xF3);

endTransmission(false);

Don’t forget that we need to have the TransmissionInProgress flag set to false.

begin() goes into setup(), where it will only be called once and will set the

TransmissionInProgress flag set to false.

beginTransmission(0x40) clears the receive buffer and saves the slave

address for other functions to use.

This brings us to:

Setup()

{

 begin();//sets TransmissionInProgress to false

}

void TempSensor()

{

beginTransmission(0x40); //sets TransmissionInProgress false

write (0xF3);//has no effect on the TransmissionInProgress flag

endTransmission(false);// TransmissionInProgress flag is false

This tells the sensor we want a temperature reading.

R. G. Sparber April 21, 2024 Page 28 of 37

This matches, except we expect an ACK from the sensor, and the spec sheet says

“NA*.” Following the aesthetic brings us to

*Note: Device will NACK the slave address byte until conversion is complete.

In other words, we will get a NACK until the sensor is done with its conversion.

When the conversion is done, we will get our ACK. We just have to be sure our

timer tolerates this delay in receiving an ACK. Using setTimeout(1000)

when we set up the bus, we can tolerate up to a 1000 millisecond delay in receiving

ACK. This delay will be compatible with all known sensors yet not delay a failed

sensor’s detection by more than 1 second.

The above graphic comes from endTransmission(false) on page 18.

So now we have:

Setup()

{

 begin();//sets TransmissionInProgress to false

}

void TempSensor()

{

beginTransmission(0x40); //sets TransmissionInProgress false

write (0xF3);//has no effect on the TransmissionInProgress flag

endTransmission(false);// TransmissionInProgress flag is true

Next, we need to ask for that two byte temperature reading.

R. G. Sparber April 21, 2024 Page 29 of 37

Recall that R means we output a 1.

On page 19,18 I found:

These match, except that the spec sheet will send a NACK after reading back the

second byte, while SoftWire will send an ACK. Both then expect the master to

send a STOP condition. This is not a serious discrepancy as was confirmed during

my testing.

The corresponding command is

requestFrom(0xF3, 2, false) with the TransmissionInProgress flag true.

We now have

Setup()

{

 begin();//sets TransmissionInProgress to false

}

void TempSensor()

{

beginTransmission(0x40); //sets TransmissionInProgress false

write (0xF3);//has no effect on the TransmissionInProgress flag

endTransmission(false);// TransmissionInProgress flag is false

requestFrom(0xF3,2,false);//TransmissionInProgress flag is true.

We should now have two bytes in our receive buffer.

R. G. Sparber April 21, 2024 Page 30 of 37

We read the two bytes by calling read() twice. Notice that the first byte into the

buffer was the Most Significant byte, and the second byte was the Least Significant

byte. We read out in the same order.

byte MSB = read();//first in, first out buffer

byte LSB = read();

The final action is to end the conversation between the master and the slave. This

is done with a STOP condition, designated “P” in the spec sheet.

All we need to do is call stop(false). It also sets the TransmissionInProgress flag to

false.

R. G. Sparber April 21, 2024 Page 31 of 37

Sample Code: Si7021 Device

Before setup():

#include <SoftWire.h>

#include <AsyncDelay.h> //used by SoftWire

int sda0Pin = 8;//define logical pins used for bus 0

int scl0Pin = 9;

int sda1Pin = 16; //define logical pins used for bus 1

int scl1Pin = 10;

SoftWire sw0(sda0Pin, scl0Pin);//define the two I2C busses

SoftWire sw1(sda1Pin, scl1Pin);

// These buffers must be at least as large as the largest read or write you

perform.

char sw0TxBuffer[16];//used by SoftWire bus 0

char sw0RxBuffer[16]; //used by SoftWire bus 0

char sw1TxBuffer[16];//used by SoftWire bus 1

char sw1RxBuffer[16]; //used by SoftWire bus 1

AsyncDelay readInterval;//required by SoftWire docs

byte Si7021AddressByte = 0x40;//this is the 7 bit address of our sensor

byte measureTempByte = 0xF3;//this is the 8 bit command for reading temp

The first #include brings in SoftWire header file which defines functions and

variables within SoftWire.cpp which it includes. SoftWire uses AsyncDelay so that

is our second #include.

Next, define which logical pins on our Pro Micro processor will be used for each

of the two SoftWire buses. Then, we make two copies of SoftWire. One is called

sw0 with its SDA and SCL, while the other is called sw1 with its SDA and SCL.

Next, the transmit and receive buffers for each I2C bus are defined.

We make one copy of AsyncDelay, which we included, and call it readInterval.

The last two lines are specific to the I2C device we will drive.

R. G. Sparber April 21, 2024 Page 32 of 37

In setup()

setup()

{

sw0.setTxBuffer(sw0TxBuffer, sizeof(sw0TxBuffer));//set up bus 0

 sw0.setRxBuffer(sw0RxBuffer, sizeof(sw0RxBuffer));

 sw0.setDelay_us(5);//from SoftWire docs

 sw0.setTimeout(1000);//from SoftWire docs

 sw0.begin();//called only once, at setup

 sw1.setTxBuffer(sw1TxBuffer, sizeof(sw1TxBuffer)); //set up bus 1

 sw1.setRxBuffer(sw1RxBuffer, sizeof(sw1RxBuffer));

 sw1.setDelay_us(5);

 sw1.setTimeout(1000);

 sw1.begin();

 readInterval.start(2000, AsyncDelay::MILLIS); //from SoftWire docs

}

SoftWire requires the next block of code. I didn’t change any of it. Notice that I

used the same commands for each bus, only changing the bus name.

Then comes our first SoftWire operational command: begin(). It sets the initial

conditions on each bus by sending out a STOP condition and setting the

TransmissionInProgress flag to false.

Although we have set up two I2C buses, SoftWire can only operate one at a time.

This last line is required by SoftWire.

This concludes the setting up of the environment to run my I2C sensor driver.

R. G. Sparber April 21, 2024 Page 33 of 37

The I2C Driver

I am driving a Si7021 Humidity and Temperature sensor connected to SoftWire

bus 0. I will read the temperature and place the raw result into an array.

void Si7021Driver()

{

sw0.beginTransmission(Si7021AddressByte);//bus 0. Sensor address is 0x40

 if(!sw0.write(measureTempByte))//returns 0 for fault and 1 if OK

 {

 receivedDataByte[16] = failedByte;//populate status byte

with failure

 return;

 }

 if(sw0.endTransmission(false) != 0)

 {;//send slave address, write and measurement command

 receivedDataByte[16] = failedByte;//populate status byte

with failure

 return;

 }

 delay(20);//time for sensor to take a reading plus software

overhead

 sw0.requestFrom(Si7021AddressByte,2, false);//command a read of 2

bytes of data

 unsigned long startTimeULong = millis();

 byte byteCountByte = 0;

 while(1)

 {//read the MS Byte and LS Byte

 if(sw0.available() >= 2)

 {//our two bytes are waiting to be read

 receivedDataByte[0] = sw0.read();//MSB

 receivedDataByte[1] = sw0.read();//LSB

 receivedDataByte[16] = successByte;//set status byte

 return;

 }else

 {

 if((millis() - startTimeULong) > 200)

 {//we timed out waiting for our temp reading

 receivedDataByte[16] = timedOutByte;//4

 return;//give up on sensor after waiting 200 ms

 }

 }

 }

 sw0.stop(false);

}

https://cdn.sparkfun.com/assets/b/1/b/8/5/Si7021-A20.pdf

R. G. Sparber April 21, 2024 Page 34 of 37

Appendix I: Analog Aspects of I2C

The slow rise time
due to the
capacitance of the
SCL lead and the
4.7K pull-up are
evident here. It takes
about 1.5
microseconds to go
from a logic 0 to a
logic 1.

R. G. Sparber April 21, 2024 Page 35 of 37

Here, we see the negative edge of the clock. The Pro Micro is pulling down to a

logic 0 and discharging the capacitance of the line. It can sink up to about 40 mA,

so the transition from logic 1 to 0 takes place in about 100 ns.

We can reduce our rise time by using smaller pull-up resistors but this will reduce

the available current during the fall time because the device must sink both the

capacitive and pull-up current.

R. G. Sparber April 21, 2024 Page 36 of 37

As a rough check, note that on rise time, we have 𝑣 = 3.3𝑒−
𝑡

𝜏 𝑣𝑜𝑙𝑡𝑠. Note that we

are at 2 volts after 400 ns. This gives us a 𝜏 = 800 𝑛𝑠 which equals 𝑅 × 𝐶. With R

= 4.7k, this means the total capacitance on the node is 170 pf.

The initial fall time is about 2 volts in 50 ns and is approximately linear so that we

can say 𝐼 = 𝐶
𝑑𝑣

𝑑𝑡
= 170 𝑝𝑓

2𝑉

50 𝑛𝑠
 = 6.8 mA which is sunk by the Pro Micro. Note

that that is far less than the maximum rated current of 40 mA.

R. G. Sparber April 21, 2024 Page 37 of 37

Acknowledgments
Thanks to the authors of SoftWire for writing code that I could comprehend.

I welcome your comments and questions.

If you want me to contact you each time I publish an article, email me with

“Subscribe” in the subject line. In the body of the email, please tell me if you are

interested in metalworking, software plus electronics, kayaking, and/or the Lectric

XP eBike so I can put you on the right distribution list.

If you are on a list and have had enough, email me “Unsubscribe” in the subject

line. No hard feelings.

Rick Sparber

rgsparber@AOL.com

Rick.Sparber.org

